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1. VCE® Background 
 
Vibrant Clean Energy, LLC (VCE®) is a Colorado company that has positioned itself as a world-class provider 
of renewable energy assessment and energy optimization studies. VCE®, since its beginnings, has focused 
on providing the analytical underpinning for the energy transition underway across the world. The team at 
VCE® have provided support to the private and public sectors enabling more intelligent implementation of 
energy resources onto the electricity grid. 
 
The primary mission of VCE® is to provide clients with the least-cost pathways to fulfill their particular needs. 
The least-cost pathways can be benchmarked against sensitivities to assess the impacts of alternative 
options. VCE® has expertise on Renewable Energy (RE), Energy Efficiency (EE), electric/thermal energy 
storage, system integration, Electric Vehicles (EVs), sector electrification, natural gas markets, economics, 
software development, policies and regulations, and big-data analytics. 
 
VCE® is led by founder and CEO Dr Christopher T M Clack, who has a background in mathematics, statistics 
and renewable energy modeling. He has been building energy grid integration models for almost a decade 
with a strong interest in agnostic cost co-optimization. All the models that Dr Clack has created are 
constructed from the ground up to incorporate high-resolution weather and load data. In a nutshell, the 
models are designed to deal with big data.  
 
The flagship model is known as WIS:dom® [Weather-Informed energy Systems: for design, operation, and 
market optimization]. It is the successor to the C-OEM suite. It is the first, and only, commercially available 
combined capacity expansion and production cost model that can solve for the entire North American grid, 
while considering variable generation, at 5-minute 3-km resolution, transmission power flow, generator 
physical limitations, retirements, and yearly investment periods. It, also, simultaneously solves for electricity 
storage, electric demand, sector electrification, and fuel markets and supply. 
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2. Purpose of Study 
 
Study Objectives: 
 

 The creation of a consecutive three-year weather and power dataset for wind and solar generators 
at 3-km, 5-minute resolution across the entire Eastern Interconnection (EIC) footprint; 

 Description of the process and metrics surrounding the dataset creation; 
 Perform detailed modeling of generator, storage and transmission siting using the WIS:dom® 

optimization tool for the MISO and EIC electricity grids as they transition to extremely high 
penetration levels of variable renewable energy (VRE), electric vehicles (EV), distributed solar (DPV) 
and electric storage; 

 Compute the potential impacts of transmission and storage on the siting of the VREs; 
 Address the issues with extremely high levels of VREs within MISO footprint; 
 Calculate the fuel burns in each region of MISO under all scenarios. 

 
Study Approach: 
 

1. Create a high-resolution wind and solar dataset that covers the entire contiguous United States. 
The dataset will consist of three chronological calendar years and has a granularity of 3-km grid 
spacing with 5-minute time steps. The input data will be of the highest quality available and the 
power algorithms will contain state-of-the-science methods. 

2. Provide the full dataset to MISO for use in all their future work. 
3. Document the processes and methods for MISO and its stakeholders (present document). 
4. Incorporate the high-resolution power datasets into WIS:dom® for production cost analysis at 5-

minute frequency. 
5. Perform WIS:dom® optimizations on twenty scenarios (each with ten investment cycles to reach 

their final target) to create portraits of the evolution of the MISO and EIC electricity grid under deep 
penetration levels of VREs.  

6. Compose a summary of the modeling results to determine salient features and observations that 
the modeling displays (the companion document to the present one). 

7. Feed the VRE siting decisions from the WIS:dom® scenarios into the MISO MTEP process.  

  

https://www.vibrantcleanenergy.com/wp-content/uploads/2021/04/2018%20VCE%20Study_Dataset%20Methods%20and%20Analysis536960.pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2021/04/2018%20VCE%20Study_Results536959.pdf
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3. Overview of the Power Dataset 
 
As the integration of VREs into the electricity grid grows, it is increasingly important to have accurate 
estimates of expected electricity generation from these sources.  Accurate estimates of power output from 
renewable energy generators depend on two factors: (1) accurate forecasts of the meteorological variables 
that affect renewable energy generation and (2) realistic modeling of the renewable energy generators. 
VCE® strives to achieve both of these requirements for the present study, as will be described in the 
following sections. 
 
VCE® provides a normalized power dataset for both wind and solar technologies for various weather years 
based on the National Oceanic and Atmospheric Administration’s (NOAA) High Resolution Rapid Refresh 
(HRRR) weather forecast model. The power dataset is the best available estimate of what the synchronous 
wind and solar power profiles looked like across the contiguous United States (CONUS). These are provided 
on a calendar year basis, gridded spatially at 3km and temporally at five minutes. The calendar years 
originally provided to MISO were for 2014, 2015 and 2016. In late 2019, MISO requested two additional 
calendar years (2017 and 2018) to complete their data set for five chronological years from 2014 through 
2018. 
 
The input weather data is obtained from the NOAA HRRR weather forecast model, which is a specially 
configured version of Advanced Research WRF (ARW) model. The HRRR is a run hourly on a 3-km grid 
resolution and its domain covers the continental United States as well as portions of Canada and Mexico. 
Since its inception, the HRRR has undergone rapid and continuous improvement to its physical 
parameterization schemes, many of which have specifically targeted improved forecasts for the renewable 
energy sector. Through collaborative research efforts between Department of Energy (DOE) and NOAA, 
projects such as the Solar Forecast Improvement Project (James et al. 2015, Benjamin et al. 2016), the Wind 
Forecast Improvement Projects I and II (Wilczak et al. 2015, Shaw et al. 2019) were conducted to improve 
forecasts of meteorological quantities important for wind and solar energy forecasting. 
 
Weather not only influences the production of renewable energy, but also impacts demand.  Weather events 
like the “Polar Vortex” of 2014 can result in reduced (or zero) generation of energy from wind and solar 
generators, while increasing energy demand (for heating, increased frequency of EV charging, and so on). 
These events can last several days and it is important to model the chronological nature of these events on 
the energy grid to ensure reliability. In addition, it is important to perform the modeling using multiple 
weather years to account for the inter-annual variability of weather patterns. For example, the jet stream 
remained further north than usual in 2015. This brought well below normal mean wind speeds across the 
whole of the CONUA that came to be known as the “wind drought of 2015”. Years like these can result in a 
severe deficit of wind energy production especially during summer nighttime periods (for example, lower 
intensity low level jets across the great plains) when demand for cooling will be high. Providing multiple 
years of the power dataset allows insight into how the weather changes year-on-year. 
 
 

4. Wind Power Dataset Method 
 
The amount of wind power produced from a wind turbine is proportional to the cube of the wind speed 
directed into the wind turbine, perpendicular to the rotor. As wind turbine hub heights have grown and the 
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rotor swept areas have increased, different sections of the wind turbine rotor are exposed to (sometimes 
significantly) different conditions of wind speed, temperature, air density, and precipitation. Therefore, it is 
very important to model the impact of the change of these meteorological conditions with height on wind 
power production. The impact of change in meteorological quantities with height on wind power 
production is modeled using the rotor equivalent formulations (see e.g. Clack et al. 2015 and Choukulkar et 
al. 2015). The details of the wind power calculations are described below. 
 
The wind power dataset is created using the HRRR weather forecasts available from NOAA. The model 
outputs are available for the following forecast hours: 00 (also known as initialization or assimilation), 02, 
06, and 12. The forecast hour 02 output has been found to be the most accurate (when compared to 
observations), and is used for the power calculations1. The following variables are used to create the wind 
power dataset:  

(1) Horizontal components of wind (u, v) 
(2) Pressure (P) 
(3) Temperature (T) 
(4) Specific humidity (spH) 
(5) Geopotential height (GPT) 
(6) Cloud-water mixing ratio (cwr) 
(7) Rain-water mixing ratio (rwr) 
(8) Wind gust at lowest level (WG) 

 
The above variables are output by the model on three different vertical coordinates: (1) Pressure 
coordinates, (2) Terrain following sigma coordinates, (3) Hybrid vertical coordinates. The hybrid vertical 
coordinate was found to mitigate the small-scale noise found near steep terrain, while having better vertical 
resolution than the pressure coordinates. Figure 1 shows an example horizontal transect through complex 
terrain from a NOAA presentation. It can be seen that the vertical velocity fields are much more realistic in 
magnitude and less noisy in the hybrid coordinate. 
 

 

                                                      
 
 
 
1 During periods where forecast hour 02 is missing, forecast hour 00 is used and for periods where forecast hour 00 is also missing, 
we fall back to forecast hour 06. 
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Figure 1: Reduction in noise in the hybrid coordinate (left) compared to the terrain following coordinate (right). 

 
The model outputs do not include density and needs to be calculated. Density is calculated using a modified 
formulation of the ideal gas law 
 

𝜌𝜌 =
𝑃𝑃𝑜𝑜0.2854𝑃𝑃(1−0.2854)

𝑅𝑅𝑇𝑇𝑣𝑣
,                                                                                     (1) 

 
where R is the specific gas constant (287.058 J.kg-1.K-1 for dry air) and Tv is the virtual potential temperature, 
which is calculated using the formula 
 

𝑇𝑇𝑣𝑣 =
𝑇𝑇

�𝑃𝑃 𝑃𝑃𝑜𝑜� �
𝜅𝜅 �1 + 0.61𝑠𝑠𝑠𝑠𝑠𝑠 −  (𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑟𝑟𝑟𝑟)�,                                                               (2) 

 
where Po is the standard pressure which is 105 Pa and 𝜅𝜅 is the Poisson constant given by 
 

𝜅𝜅 = 0.2854 ∗ (1 − 0.24 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠).                                                                           (3) 
 
The modified formulation is used because we need to account for the buoyancy effects of change in 
temperature and pressure with height above the ground. This effect is captured by the virtual potential 
temperature calculated using Eq. (2). The horizontal wind speed components (u, v), density, temperature 
and cloud-water mixing ratio are now interpolated to heights 20 m above ground to 300 m above ground 
with 15 m vertical resolution. The wind gust outputs are used to calculate the gust factor expressed as a 
fraction of the mean wind speed.   
 
Rotor Equivalent Calculations: 
 
Potential wind turbine power generation is given by the kinetic energy flux through the wind turbine rotor 
layer. This general relationship is shown in Eq. (4) 
 

𝑃𝑃𝑤𝑤 =
1
2
𝐶𝐶𝑝𝑝𝜌𝜌𝜌𝜌𝑈𝑈3                                                                                              (4) 

 
where Cp is the coefficient of power (ratio of actual power generated to available power in the wind), ρ is 
the air density, A is area of the wind turbine rotor and U is the horizontal wind velocity component along 
the horizontal axis of the wind turbine rotor. The vertical component of the velocity does not contribute 
appreciably to wind power production as modern wind turbines use aerodynamic lift for propulsion. In 
addition, any drag-component due to vertical velocity is assumed to cancel out over the rotor swept area. 
Equation (4) is valid as long as the density and velocity do not change within the rotor swept area of the 
wind turbine. However, modern wind turbine rotors can span vertical extents of 100 m or more and the 
variables that impact wind power production can change substantially within this vertical extent (Figure 2). 
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Figure 2: Schematic showing how the wind profile can change within the rotor layer and how the wind turbine rotor is divided to 

calculate the rotor equivalent variables. 

The rotor equivalent formulation provides a more accurate estimate of wind power production by taking 
into account the vertical profile of the variables affecting wind power production. At its core, the rotor 
equivalent formulation calculates an area weighted mean of the various meteorological variables across the 
wind turbine rotor. The rotor area is divided into sections with respect to height equal to the vertical 
resolution of the dataset (15m). Then each variable value at a given height is area weighted by the portion 
of the wind turbine rotor it represents (equal to the vertical resolution) in order to estimate the equivalent 
effect of the vertical profile of that variable. Equations (5) and (6) show how the speed and density in Eq. (4) 
can be replaced by their rotor equivalent counterparts. 
 

𝑈𝑈𝑒𝑒𝑒𝑒 =
1
𝐴𝐴
�

𝑢𝑢𝑖𝑖𝑢𝑢𝐻𝐻 + 𝑣𝑣𝑖𝑖𝑣𝑣𝐻𝐻
𝑈𝑈𝐻𝐻

𝐴𝐴𝑖𝑖
𝑖𝑖

                                                                                      (5) 

𝜌𝜌𝑒𝑒𝑒𝑒 =
1
𝐴𝐴
�𝜌𝜌𝑖𝑖𝐴𝐴𝑖𝑖
𝑖𝑖

                                                                                                       (6) 

 
In Eq. (5), the effect of turbulence is neglected. The effect of turbulence can be included in the power 
calculations using Eq. (7) in Choukulkar et al. 2015 re-arranged here: 
 

𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒 =
1
𝐴𝐴
�

(𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑖𝑖′)(𝑢𝑢𝐻𝐻 + 𝑢𝑢𝐻𝐻′ ) + (𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑖𝑖′)(𝑣𝑣𝐻𝐻 + 𝑣𝑣𝐻𝐻′ )
[(𝑢𝑢𝐻𝐻 + 𝑢𝑢𝐻𝐻′ )2 + (𝑣𝑣𝐻𝐻 + 𝑣𝑣𝐻𝐻′ )2]1/2 𝐴𝐴𝑖𝑖

𝑖𝑖

                                                    (7) 

 
where (. )′ denotes tendency of that variable in a given time period (5-min in our case). Equation (7) shows 
that the effect of turbulence results in additional wind power being generated, which makes sense 
analytically as turbulence represents additional energy in the wind. However, actual wind turbine response 
to turbulence results in additional power generated at the lower end of the power curve (due to the 
additional energy) and under-performance at the higher end of the power curve due to the positive velocity 
fluctuations being damped by the wind turbine control (Wharton & Lundquist 2012). This effect of 
turbulence on power production due to wind turbine control can only be modelled through a full 
mechanical modeling of the wind turbine as is done by NREL’s FAST software. In our analysis, this effect of 
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turbulence is neglected as it is found to be much smaller compared to the effect of wind speed and direction 
shear (Choukulkar et al. 2015).   
 
The rotor equivalent technique allows us to take into account change in density with respect to height as 
well as wind speed and direction shear on wind turbine power potential calculations. The rotor equivalent 
formulation is also applied to the temperature and moisture information as shown in Eqs (8) and (9). The 
rotor equivalent temperature and moisture information is used to determine icing possibility within the 
wind turbine rotor. 
 

𝑇𝑇𝑒𝑒𝑒𝑒 =
1
𝐴𝐴
�𝑇𝑇𝑖𝑖𝐴𝐴𝑖𝑖
𝑖𝑖

                                                                                                         (8) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑞𝑞 =
1
𝐴𝐴
�𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝐴𝐴𝑖𝑖
𝑖𝑖

.                                                                                                   (9) 

 
The rotor equivalent quantities are then linearly interpolated to 5-min intervals for each of the HRRR grid 
cells. The linear interpolation also covers any possible periods of data outages. These 5-min rotor equivalent 
quantities are used in the power calculations. In order to calculate actual power generation from the 
theoretical available power in the wind, a Cp curve is used. A Cp curve is the ratio of the actual electrical 
power generated for a given wind speed to the theoretical available power in the wind given by Eq. (10): 
 

𝐶𝐶𝑝𝑝 =
𝑃𝑃(𝑢𝑢)

𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑢𝑢).                                                                                                      (10) 

 
As the wind interacts with the wind turbine, it loses momentum because it is used to drive the turbine blades 
and produce electricity. This loss is momentum from energy extraction results in the control volume of the 
wind passing through the turbine to expand downstream of the rotor to preserve continuity. Based on this, 
Betz (1927) calculated the theoretical maximum energy that can be extracted by a wind turbine. This 
theoretical maximum, called the Betz limit, is equal to 59.3% and is the maximum value a Cp can take. 
 
The Cp curve varies for different types of wind turbines. The International Electrotechnical Commission (IEC) 
described four classes for wind turbines: Classes I, II, III and offshore. The shape of the Cp curve is defined 
not only by the physical limits on converting wind power to electricity, but also the control strategies 
employed by the wind turbine. The Cp curves for the various wind turbine classes are shown in Figure 3. The 
Cp curve for the various wind turbine classes are composited and fit with a 12th order polynomial, shown as 
bright blue line in Figure 3.  This composite Cp curve is used to calculate actual power production. It is 
assumed that this derived Cp curve is valid for the rotor equivalent wind speed and for the observed changes 
in density. 
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Figure 3: Coefficient of power curves for the various IEC class turbines. 

WIS:dom® takes into account periods where generation may not be possible due to weather conditions. 
Normal operational temperatures for wind turbines are set to between -25oC and 45oC. In addition, potential 
for icing is also calculated. Icing is considered possible when temperatures are below -15oC and cloud-water 
mixing ratio is greater than zero.  The periods with potential for icing or temperatures outside of normal 
operating conditions are set to zero power output. It is important to identify periods such as the above 
where generation will be limited or zero as these are usually correlated with periods of high energy demand. 
WIS:dom® then has to ensure that the demand during these periods will be met in some other way. 
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4.1. Updates to the Wind Power Methods (2019) 
 
In order to further improve the accuracy of the wind power calculations, the methodology was updated to 
include the following two additional components: 
 

a) The impact of turbulence on power generation 
b) Wind turbine response to changes in air density 

 

4.1.1. Introducing effect of turbulence 
 
As described before, turbulence has a complicated impact on the wind power generation. At wind speeds 
closer to the cut in wind speed, presence of turbulence increases power generated from the turbine while 
at wind speeds closer to the rated power, turbulence reduces the power output from a wind turbine 
(Wharton and Lundquist 2012). The reason for this behavior is that near cut-in speed, the positive 
fluctuations due to turbulence are allowed to generate excess power, while the negative fluctuations do not 
have any effect as the turbine is not generating any power in that case. Near the rated wind speed, the 
positive fluctuations due to turbulence get damped out by the wind turbine control, while the negative 
fluctuations reduce power output and hence the net effect is a reduction in power output from the turbine. 
 
Modelling this effect analytically is difficult as seen from Eq. (7) where presence of turbulence always results 
in increased power production. Therefore, instead of trying to model this effect analytically, it was decided 
to utilize the characteristics of the Cp curve to simulate the wind turbine control response. To do this, the 
model wind speed output needs to be perturbed in a manner that actual atmospheric turbulence would as 
shown in Eq. (11), known as the Reynold’s decomposition: 
 

𝑢𝑢(𝑡𝑡) = 𝑢𝑢�(𝑡𝑡) + 𝑢𝑢′(𝑡𝑡),                                                                                      (11) 
   
where, u(t) is the east-west component of wind speed including effect of turbulence at given timestep, 
 𝑢𝑢�(𝑡𝑡) is the mean east-west component at a given timestep from the HRRR model, 
 𝑢𝑢′(𝑡𝑡) is the random turbulence perturbation at that timestep. 
 
The perturbations that need to be added to the model wind speed are estimated using the wind gust model 
output. The model estimate of wind gust represents a sudden, brief increase in peak wind speed (lasting 
less than 20 seconds) expected at a given timestep. It is now required to estimate the standard deviation of 
turbulence from this peak value. Assuming that the turbulence distribution is symmetric (skewness of 0), 
which is reasonable for horizontal velocity turbulence, and that it follows a standard normal distribution, 
the standard deviation can be estimated using Eq. (12): 
 

𝜎𝜎𝑈𝑈 =
�𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑈𝑈𝑒𝑒𝑒𝑒�

4
,                                                                              (12) 

 
where, 𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the model outputted wind gust at a given timestep, 
 𝑈𝑈𝑒𝑒𝑒𝑒      is rotor equivalent wind speed from Eq. (5), 
 𝜎𝜎𝑈𝑈     is the standard deviation of wind speed due to turbulence. 
 
The reasoning used in Eq. (12) to calculate standard deviation is that since the gust is the peak wind speed 
observed, it is assumed to be a value in the 99.9936th percentile, which is four standard deviations from the 
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mean. The standard deviation of wind speed due to turbulence calculated using Eq. (12) is now used to 
calculate the random perturbation to the rotor equivalent wind speed at a given timestep using Eq. (13): 
 

𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑈𝑈𝑒𝑒𝑒𝑒 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,𝜎𝜎𝑈𝑈),                                                                 (13) 
 
where, 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒 is the rotor equivalent wind speed including the effect of turbulence. The rest of the calculations 
proceed as described before. 
 

4.1.2. Capturing turbine response to change in density 
 
Modern wind turbines have control responses to maximize wind generation in presence of changing air 
densities. This control response is usually active close to the rated wind speed, but can also extend to region 
2 of the power curve. Figure 4 shows the turbine response in terms of the observed Cp values in response 
to changes in air density. 
 
As seen from Figure 4 the Cp value is a function of both wind speed and density (top panel) and the changes 
in Cp values compared to the Cp value at standard density are highly non-linear (bottom panel). However, 
the change in Cp with respect to density at a given wind speed is linear, with the slope and intercept of this 
linear behavior changing at every wind speed. Thus, a model was constructed to predict the slope and 
intercept of the change in Cp at a given wind speed. This model allows to predict a “correction” to the Cp at 
standard density and given wind speed that will produce the correct Cp value at that specific wind speed 
and density. 
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Figure 4: Impact of density on Cp values for a 2.3 MW Siemens wind turbine. 

 
Figure 5 shows comparisons of the above model predicted Cp values against the actual manufacturer 
supplied Cp values. It is seen that the model is able to predict the changes to the Cp values at various 
densities and wind speeds accurately. The comparison of the Cp values at various densities to the Cp values 
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at the standard density (1.225 kg/m3) show that there can be differences of up 50% of the Cp value at a 
given wind speed. Hence it is very important to quantify the impact of density on the Cp values. 

 
Figure 5: Comparison of model predicted Cp (black dashed line) values to the actual turbine Cp values (red solid line).  The standard 

Cp value at density of 1.225 kg/m3 is shown in solid green line. 
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4.2. Analysis of the Wind Power Dataset 
 
The wind power calculations are performed for each HRRR cell (over 1.9 million cells in this case) for all the 
years required to run WIS:dom®. The WIS:dom® model is run on the same grid as the HRRR, however, only 
a subset of the HRRR cells are made available for wind plant development. The potential for wind 
development in MW at each HRRR cell is made available to WIS:dom®, which is used in determining whether 
wind generation gets built or not. The available wind capacity potential provided to WIS:dom® is shown in 
Figure 6(d). When choosing to build wind generation, WIS:dom® can choose the most optimal hub-height 
wind turbine to build. As seen in Figure 6 (a) and 6(c), higher hub-heights give higher wind power capacity 
factors. However, there are additional costs associated with building taller towers and wind turbines capable 
to withstanding higher wind loading. WIS:dom® takes these costs into account and determines the optimal 
hub-height at a given location. The optimal height is determined by evaluating whether the increased cost 
due to the higher tower height is offset by increased revenue or demand met from additional power 
generation at the higher hub-height. In this analysis it is assumed that the same turbine rotor is installed 
on taller towers. An important impact of this assumption is that as the hub-heights increases, the wind 
power capacity factors also increase due to the higher average wind speeds at increased heights above the 
ground. However, beyond a certain hub-height, wind power capacity factors start to decrease. This decrease 
in power capacity factors is due to increased wind speeds at higher hub-heights, the wind turbines are in 
the cut-off portion of the power curve more often. Therefore, to take full advantage of the increased wind 
resource at higher heights will require a redesign of the turbine rotor to operate in the higher wind speed 
regime. 

 
Figure 6: The wind power dataset. (a) Mean wind power capacity factor at for 80-m hub-height using data from year 2014 (b) 

Optimal hub-height for the CONUS (c) Mean wind power capacity factor for 120 m hub-height using data from year 2014 (d) Wind 
plant siting constraints for the CONUS 

An important consideration in variable renewable energy development is the impact of inter-annual 
variability on power generation. Figure 7 shows annual average wind power capacity factors calculated for 
years 2014 (Figure 7a), 2015 (Figure 7b), 2016 (Figure 7c) and the average over the three years (Figure 7d). 
It can be seen that there are differences in the wind power capacity factors over the three years. The wind 
power capacity factors are seen to be lower over the entire CONUS in 2015, while in 2016 the region of high 
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wind power capacity factors over the Great Plains is seen to be narrowed as lower in magnitude compared 
to the average over the three years.  

 
Figure 7: Average wind power capacity factors at 100m AGL for (a) year 2014 (b) year 2015 (c) year 2016 (d) average over years 2014, 

2015 and 2016. 

The differences in wind power capacity factor are better visualized by plotting the difference of the yearly 
average capacity factor from the three-year average as shown in Figure 8. It is observed that the year 2014 
indeed produced higher than average wind power capacity factors over the CONUS. However, 2014 has 
lower than average wind power capacity factors offshore. The reason for year 2015 being called the year of 
“wind drought” is apparent from middle panel of Figure 8. The wind power capacity factors are seen to be 
lower by 2.5 to 3 percentage points (which is almost 10% reduction from the average capacity factors 
observed). The lower capacity factors are observed over the full CONUS except a few states in the mid-west 
such Minnesota, Michigan, Illinois. The year 2016 is characterized by lower than average wind power 
capacity factors over the MISO region, while the rest of CONUS shows wind power capacity factors closer 
to the three-year average. 
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Figure 8: Percentage difference in annual capacity factor average compared to the three-year average. 

The difference in annual average air density for years 2014, 2015 and 2016 from the three-year average is 
shown in Figure 9.  It is observed from Figure 9 that air density was higher in 2014 by about 0.7% over a 
substantial portion of the CONUS. While in 2016, the air density was lower than the three-year average by 
about 0.5%, especially over the MISO region. In the year 2015, the annual average density differences were 
much smaller with the northern part of the CONUS showing about a 0.3% reduction. Since the change in 
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density has a linearly proportional impact on power generation, of the approximately 3 percentage point 
increase in wind power capacity factor observed in 2014, about a third was from increase in density. 
Similarly, of the approximately 2.5 percentage point reduction in wind power capacity factor observed in 
2016, 0.5 percentage points came from reduction in air density. From the temperature data (not shown) it 
is observed that regions and periods of higher density were accompanied by lower than average 
temperatures and vice versa for periods of lower density. Therefore, in these three years variations in density 
accounted for approximately 20% to 33% of the inter-annual variability in wind power capacity factors. 
These results illustrate the importance of calculating the air density as accurately as possible which is done 
using Eqs (1) – (3) and incorporating the changes over the rotor swept area through the rotor equivalent 
calculations done using Eq. (6). 
 
The scale of the inter-annual variability observed from these three years gives a sense about the challenges 
involved in capacity expansion planning when it comes to variable renewable energy. It is observed that 
many of the locations that saw lower capacity factors in year 2015 were locations where wind generation is 
concentrated; such as the great plains, Tehachapi pass and in the pacific northwest.  Having several years 
of weather data in the WIS:dom® model ensures the model finds a solution where demand is met given 
these kinds of situations. 
 
In addition to the ability to meet demand, a particular weather year can have an impact on the economics 
of the installed generation. For example, if a capacity expansion model is run using a weather year with 
higher than average wind power capacity factors (like 2014 for example), it can make wind generation looks 
more economically attractive than it is on average. This can result in skewed installation of generation 
resources, which will not only create difficulties in meeting demand during meteorologically different years, 
but also result in economic hardships for operators of those generation assets. 
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Figure 9:  Percentage difference in annual average air density for year 2014 (top), 2015 (middle) and 2016 (bottom) compared to the 

three-year average. 

Another way of looking at the inter-annual variability in a resource is to consider the Coefficient of Variation 
over different combinations of historical weather years. The Coefficient of Variation (CV) is a measure of 
relative variability. This is the standard deviation of a series divided by the mean of the same series. If the 
CV < 100%, the standard deviation of the series is less than the mean of the series. The CV is defined as: 
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𝐶𝐶𝐶𝐶 =  

𝜎𝜎
𝜇𝜇

   ∗     100% 

 
For all the weather years used for the study (2014-2018), CV was calculated for all the various combinations 
of years possible. Combinations are defined through the following equation: 
 

𝐶𝐶(𝑛𝑛, 𝑟𝑟) =  
𝑛𝑛!

𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)!
 

 
This is the formula to find the number of different combinations of n distinct objects taken r at a time. In 
this case, the objects, n, are 2014, 2015, 2016, 2017 and 2018. The number of times, r, is 1 year at a time, 2 
years at a time and so on up to 5 years at a time.  
 

 
Figure 10:  The Coefficient of Variation shown using 2014-2018 data over 1- to 5-year groupings for the Wind Resource across MISO. 

CV is shown for all combinations within each grouping. 

In Figure 10, the CV is shown for all the various combinations of the 5 years of wind data available. The 
average CV of all events for each count, r, is also plotted. The average CV slowly increases with more years. 
Each year will bring new weather events to the dataset that were not experienced previously, thus increasing 
the variability over time. This average value should increase as more years are added, as it does here. When 
looking at the individual years, the year 2017 shows a higher extent of variability in relation to the mean. 
The average capacity factor from wind for that year is one of the lowest years. The standard deviation, 
though, is quite high. Combining these two together gives that higher extent of variability. Calendar year 
2018 shows the lowest extent of variability in relation to the mean. The average capacity factors in 2018 for 
wind were highest from all the years available. This increase in the mean decreased the CV metric for this 
year even though standard deviation for 2018 was actually higher than that seen in 2017. In short, using 
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five chronological years provides modeling with much more variability than an average of those same five 
years. 
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4.3. Verification of Power Calculations  
 
To validate the wind power calculations, VCE® obtained Security Constrained Economic Dispatch (SCED) 
data from Electric Reliability Council of Texas (ERCOT) for years 2017 and 20182.  Data from 109 wind farms 
in ERCOT is obtained for the comparison. The metadata of these wind farms is obtained from EIA and 
Seasonal Assessment of Resource Adequacy (SARA) reports. In addition, the shape of the wind farm and 
the locations of individual turbines is obtained from United States Geological Survey (USGS) United States 
Wind Turbine Database (USWTDB). Figure 11 shows the locations of wind farms and wind turbine locations 
found from the USWTDB dataset. The USWTDB dataset contains all the required metadata information to 
model the wind farm such as nameplate capacity, wind turbine types in the farm, hub-heights, rotor 
diameter and wind turbine rated capacity. The following section describes how wind farm and wind turbine 
information is used to model the power output from each wind farm. 
 

 
Figure 11: Wind turbine location information from the USWTDB dataset. Inset shows a zoomed in image of the area denoted by the 

solid black box.  The background colors are average wind power capacity factors for 80 m hub-heights for years 2014 to 2016.  
Brighter colors indicate higher capacity factors. 

There are many different open data sources available to find metadata on existing wind farms. Each source 
can have both large and small differences between them. There is no answer that is 100% accurate from 
any one data source. Having different sources is pertinent to achieving a more complete picture of what is 
out there for any generator technology, wind included. In ERCOT, three sources were used for analyzing 
and setting the metadata for all the utility scale wind farms under that ISO’s umbrella. The sources included: 
Annual EIA 860 generator and plant data, the latest max capacity values from the SARA report, and finally 
the max power output observed from the Security SCED observation data reported by ERCOT for individual 
wind farms. The general process to align the data was as follows: 

1. Align the actual wind farms reported from SARA, the EIA 860, and the SCED data was the first main 
task. Each source might have a slightly different count of plants or plants named differently. 

2. SARA report capacities and maximum outputs from the SCED observation data might reveal that 
the EIA 860 annual numbers were out-of-date and usually needed to be adjusted upward. 

                                                      
 
 
 
2 The SCED data obtained with the assistance of MAP®. 



©Vibrant Clean Energy, LLC                                                                                                   Boulder, Colorado 
info@vibrantcleanenergy.com April 2020 VibrantCleanEnergy.com 

- 23 - 

3. SARA report capacities might align well with EIA 860 numbers, but the SCED data might not reveal 
the same thing. This would be cause for further investigation into what could be going on for this 
farm. 

4. In cases where all three sources aligned, there was much higher confidence in the final metadata 
decisions. 

5. Cases where no resources aligned were rare. However, when they did happen, further investigation 
occurred into these sites to see if other sources (as an example, the USGS wind turbine location 
dataset) might provide any insight. 

 
All of this work helped provide a backdrop to the representation of wind farms physically installed in the 
ERCOT system. 
 

4.3.1. Modeling the Wind Farm Generation 
 
As described in the previous sections, the wind power capacity factors are available at 3-km horizontal 
resolution and 5-min time resolution for hub-heights of 80m, 100m, and 120m. For each wind farm, the 
wind turbine metadata is used to select the capacity factor profiles at the appropriate hub-height.  For older 
wind farms where hub-heights of lower than 80m are present, a cubic function is used to de-rate the wind 
power capacity factors from 80 m level. If turbines of multiple hub-heights are present in a given farm, 
currently the farm is modeled using a capacity weighted average hub-height. Future work will model each 
wind turbine hub-height separately in order to get the most accurate results. 
 
Next, the wind turbine type is used to select an appropriate power curve for that wind turbine type. Using 
a transfer function, the capacity factors from the IEC-3 power curve used for our calculations is converted 
the power curve of the turbine type present in the farm. If power curve information is not present then the 
IEC-3 power curve is used. Finally, it is checked that the sum of all the wind turbine rated capacities add up 
to the wind farm’s nameplate capacity. If this is not so (which can happen due to missing wind turbine 
location information), then each wind turbine capacity is adjusted equally so that they add up to the wind 
farm nameplate capacity. 
 
Now the turbine location information is used to retrieve the power capacity factors from HRRR cell the 
turbine is located in.  Appropriate corrections to the capacity factor profiles are made as described above 
and then this generation information is saved. In a similar manner, all turbine generation profiles are created 
and finally added together to get the wind farm generation output. 
 

4.3.2. Comparisons of Wind Power Generation 
 
The wind power generation profiles created as described above are validated by comparing against the 
SCED data obtained for 109 wind farms in ERCOT. First, the appropriate settlement point(s) for each wind 
farm is identified. Data from all the settlement points associated with a wind farm are summed to obtain 
total SCED generation from that wind farm. Initial filtering of the SCED data is performed to only keep data 
with “Telemetered Status” was “ON”. The SCED data goes through a second, more rigorous, quality control 
where periods of obvious curtailment are removed. It is important to remove periods of curtailment as they 
cannot be simulated by the power calculation model and will result in over-estimating the model errors. 
The quality control for curtailed periods is performed as follows for 5-minutely data (some thresholds 
applied below would change for other granularities): 
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1. Scanning the data for any sharp spikes. The spike can be in the upward or downward direction. 
Any given timestamp was flagged if the power changed more than +/-20% of farm capacity and 
in opposite directions in the both the forward and backward direction in time. As an example, a 
suspect period would be flagged when looking back a single time step the power changed more 
than +20% of maximum capacity and looking forward a single time step the power dropped more 
than -20% of max capacity. This would also be flagged if it had been a spike in the downward 
direction. This threshold was used since the data was 5-minutely. 

2. When power flatlines or hovers around +/- 1% of a value that is not within a certain range of max 
capacity or 0% capacity for more than two hours it is flagged as suspect. The offending value has 
to flatline or hover more than 5% below max capacity or more than 5% above zero. 

3. Any sharp drop or rise to or from 0% capacity where the farm was at 0% capacity for more than 
two hours or the farm dropped to 0% capacity for more than two hours is suspect. For 5-minutely 
data, a 15% rise or drop in capacity would be flagged.  

4. Any drop or rise from any point that was greater than 50% capacity in a 5-minute time frame is 
flagged as suspect. 

  
Any of the above thresholds can be changed. Loosening the thresholds will release certain curtailment 
periods from being captured or flagged. Tightening the threshold will remove more periods of data that 
are actually physical weather events that create sharp ramps. Figure 12 shows a partial time-series of SCED 
generation that was quality controlled. It is observed that the obviously curtailed periods (dark blue line) 
are rejected while keep the rest of profile (light blue line) intact. 
 

 
Figure 12: An example wind farm in ERCOT where model output, SCED Data and quality-controlled SCED data is shown. When dark 

blue can be seen is where data was flagged as potential curtailment through VCE® quality control processes. 

The metrics used to estimate the quality of the modeled wind power profiles are bias, root mean square 
error (RMSE), correlation coefficient and coefficient of determination (R2). Figure 13 shows an example time-
series of the VCE® model wind generation output compared to the SCED data for the Amazon Wind Farm 
in ERCOT. The timeseries show that the model is able to capture the temporal variability in the power 
production accurately. This is due to a combination of accurate physical model of wind turbine operation, 
accurate wind forecasts from the HRRR and finally accurately determining the wind farm and wind turbine 
metadata to ensure that the wind generation model is working off correct details. 
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Figure 13: Comparison of VCE® model wind generation output (orange) with SCED data (blue) for the Amazon Wind Farm in ERCOT. 

It is observed that of the 109 wind farms for which SCED data is available, 100 wind farms have correlation 
coefficients of greater than 80%, while the remaining nine have correlation coefficients of greater than 70%. 
Figure 14 summarizes the comparison statistics from the wind farm validation. As seen from Figure 14, 
almost all wind farms show correlation coefficients greater than 80%. It is also observed that many wind 
farms are clustered around ratio of standard deviation of unity, which indicates that the model and the 
SCED data show similar level of temporal variability.   
 
The main challenge in validation of wind farm generation output is removing periods of curtailment as these 
cannot be modeled by a wind farm generation model. Although it was attempted to remove as many 
periods of obvious curtailment as possible, many curtailed generation periods still remain.  In addition, wind 
farm output is modified due to turbines being down for maintenance or disbanded (true in cases of many 
older wind farms). Since this information on wind farm maintenance schedules and turbine status is 
unavailable, differences in the modeled generation and SCED data arise. These differences are evident in 
Figure 14 from the centered RMS difference in many wind farms being on the order of 40% of the standard 
deviation. In addition, the curtailed periods artificially reduce the standard deviation of the SCED data and 
hence it appears that the model forecasts are over-predicting variability, which is probably not the case as 
the model output is expected to the smoother than the actual generation. 
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Figure 14: Taylor diagram summarizing the comparison metrics between VCE® model predicted wind power generation and SCED 

data. 

 
To better understand how curtailment, turbine maintenance or disbandment can affect wind farm output, 
the model forecasted generation is compared against the SCED data for the Southwest Mesa Wind farm in 
ERCOT in Figure 15. As seen from Figure 15, the SCED data and the model forecasted generation are well 
correlated, but the SCED data never reaches the maximum power forecasted by the model. The main reason 
for this is that this wind farm is quite old and from visual inspection of Google Earth®, many turbines are 
broken down or feathered for maintenance. As a result, although the model is correctly simulating the wind 
generation from the farm, it shows a high RMS difference,  but with a high correlation coefficient as seen in 
Figure 14. 

 
Figure 15: Comparison of VCE® model wind generation output (orange) with SCED data (blue) for the Southwest Mesa Wind Farm in 

ERCOT. 
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5. Solar Power Dataset Method 
 
Calculation the solar PV power output requires accurate forecasts of Global Horizontal Irradiance (GHI), 
Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI). These variables are then input into 
a PV cell power modeling algorithm. The components of the solar irradiances are related to each other by: 
 

GHI =  DNI ∗ cos(sza) +  DHI                                                                           (14) 
 
where sza is the solar zenith angle. 
 
Numerical weather prediction models did not output forecasts of DNI and DHI until 2016. In addition, 
forecasts of DNI and DHI produced by the HRRR after 2016 have significant biases mainly due to improper 
representation of clouds. To obtain forecasts of DHI and DNI from model outputs for years before 2016 and 
correct for model biases for years after 2016, VCE® employs a linear multiple multivariate regression 
technique developed by Clack (2017). The variables used to create the solar power data are shown below. 
 
From HRRR: 

(1) Downwelling shortwave (SW), 
(2) Downwelling longwave (LW), 
(3) 10-m wind speed (Wind10m), 
(4) 2-m temperature (T2m), 
(5) Direct normal irradiance (DNI) – 2016 onwards, 
(6) Diffuse horizontal irradiance (DHI) – 2016 onwards. 

 
From GOES-east and GOES-west (for datasets before 2016 only): 

(7) Visible, 
(8) 4𝜇𝜇m, 
(9) 11𝜇𝜇m, 
(10)  13𝜇𝜇m, 
(11)  Water-vapor. 

 
Calculated: 

(12)  Direct normal irradiance at the top of the atmosphere (DNI0), 
(13)  Solar zenith angle (sza), 
(14)  Solar azimuth angle (azm), 
(15)  Hour-angle (hrang), 
(16)  Declination angle (dec). 

 
The satellite observations are not included starting in 2016 as these observations are already assimilated 
within the HRRR. To perform the regression procedure, we get observations of GHI, DNI and DHI from 15 
ground-based radiation measurement sites (SURFRAD and SOLRAD) operated by the NOAA. The above 
variables are chosen as they are most likely to impact the amount of solar irradiance reaching the Earth’s 
surface and its attenuation along the way. A substantial portion of the effort in creating the solar power 
dataset is spent on getting the data ready for regression. First, the required HRRR variables are extracted 
from the HRRR output files at 1-hour resolution. These HRRR variables are then linearly interpolated to 5-
min intervals. For data gaps of longer than 1-hour, persistence is assumed and they are filled in with data 
from the same hour on the previously available day. Linear interpolation is carried out only sub-hourly. 
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Satellite measurements from GOES-east and GOES-west are used, which allows a stereoscopic observation 
of the cloud field. Each of the GOES satellite observations cover the full CONUS with observations available 
at 15-min time interval. The GOES satellites make measurements in 5-channels listed above. The 
measurements are in bit count which are converted to temperature (in Kelvin) using the formula (Clack 
2017): 
 

𝑇𝑇 =
1
2

(660 − 𝐵𝐵),    0 ≤ 𝐵𝐵 ≤ 176     𝑎𝑎𝑎𝑎𝑎𝑎 
𝑇𝑇 = 418 − 𝐵𝐵,   176 < 𝐵𝐵 ≤ 255.                                                                            (15) 

 
The spatial resolution of the satellite data is 1-km for the visible channel and 4-km for the remaining 
channels (infrared and water vapor). Since the HRRR has a spatial resolution of 3-km, the satellite data are 
spatially interpolated on to the HRRR grid. This spatially interpolated satellite data is then linearly 
interpolated in time to 5-min intervals to match the interpolated HRRR output. 
 
In addition to the variables obtained from the HRRR and satellite measurements, five additional variables 
(12 to 16 above) are calculated. The calculation of solar irradiance at the top of the atmosphere needs to 
take into account the eccentricity of Earth’s orbit. The average DNI0 at the top of the atmosphere is 1360.8 
W m-2 and is denoted by Io. The equation for the actual irradiance hitting the top of the atmosphere is given 
by: 
 

𝐷𝐷𝐷𝐷𝐷𝐷0 = 𝐼𝐼𝑜𝑜 �
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

�
2

                                                                                     (16) 

 
where Ravg is the average Earth-Sun distance and R is the instantaneous Earth-Sun distance.  The ratio of 
Ravg to R is given by the Fourier expansion in Eq. (14), which is accurate to 0.0001 (Spencer 1971): 
 

�
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

�
2

≈ 1.000110 + 0.034221 cos(𝛿𝛿) + 0.00128 sin(𝛿𝛿) + 0.000719 cos(2𝛿𝛿) + 0.000077 sin(2𝛿𝛿)     (17) 

 
where, the day angle 𝛿𝛿 = 2𝜋𝜋𝜋𝜋

365.242�  radians and d is the day of the year. 
 
The declination angle is also given as a Fourier expansion in Eq. (18), which accurate to 0.0006 radians 
(Spencer 1971): 
 
𝑑𝑑𝑑𝑑𝑑𝑑 = 0.006918 −  0.399912 cos(𝛿𝛿)  +  0.070257 sin(𝛿𝛿)  −  0.006758 cos(2𝛿𝛿)  +  0.000907 sin(2𝛿𝛿)                  

− 0.002697 cos(3𝛿𝛿) + 0.00148 sin(3𝛿𝛿)                                                                                              (18) 
 
The hour angle, given by Eq. (19) is defined as the number of degrees the Sun moves across the sky 
compared to local solar noon. The hour angle is zero at local solar noon, positive in the afternoon and 
negative in the morning: 
 

ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 15 ∗ (𝐿𝐿𝐿𝐿𝐿𝐿 − 12),                                                                                   (19) 
 
where LST is the local solar time given by 
 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿 +
𝑇𝑇𝑇𝑇
60

,                                                                                              (20) 
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where LT is the local time and TC is the time correction factor that accounts for the variation in the local 
solar time due to the range of longitudes within the same time zone, eccentricity of the Earth’s orbit and 
Earth’s axial tilt (to calculate the last two, the equation of time given by Eq. (23) is used). The time correction 
factor (TC) is calculated as 
 

𝑇𝑇𝑇𝑇 = 4 ∗ (𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐸𝐸𝐸𝐸𝐸𝐸,                                                                         (21) 
 
where, LSTM is the local standard time meridian is the reference meridian used for a particular time zone 
and is calculated using 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 15 ∗ (𝐿𝐿𝐿𝐿 − 𝑈𝑈𝑈𝑈𝑈𝑈)                                                                            (22) 
 
and EoT is the equation of time, which is an empirically derived relationship that corrects for the eccentricity 
of the Earth’s orbit and the Earth’s axial tilt. The EoT, in radians, is given by a Fourier expansion that is 
accurate to 0.0025 radians or 35 seconds (Spencer 1971): 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 0.000075 + 0.001868 cos(𝛿𝛿) − 0.032077 sin(𝛿𝛿) − 0.014615 cos(2𝛿𝛿) − 0.040849 sin(2𝛿𝛿).      (23) 
 
Now the solar zenith angle can be calculated using Eq. (24) 
 

cos(𝑠𝑠𝑠𝑠𝑠𝑠) = sin(𝑙𝑙𝑙𝑙𝑙𝑙) sin(𝑑𝑑𝑑𝑑𝑑𝑑) + cos(𝑙𝑙𝑙𝑙𝑙𝑙) cos(𝑑𝑑𝑑𝑑𝑑𝑑) cos(ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟),                          (24) 
 
where, the latitude (lat), declination angle (dec) and hour angle (hrang) are all in radians. 
 
Once all the quantities required for the regression are collected, the regression can be performed.  The 
regression is performed separately for the GHI and DNI for computational efficiency and DHI is calculated 
using Eq. (14) once the GHI and DNI estimates are known. The regression is represented mathematically as 
(Clack 2017) 
 

𝑌𝑌𝑛𝑛×𝑝𝑝 = 𝑋𝑋𝑛𝑛×(𝑟𝑟+1)𝛽𝛽(𝑟𝑟+1)×𝑝𝑝 + 𝜀𝜀𝑛𝑛×𝑝𝑝,                                                                     (25) 
 
where,  𝑌𝑌𝑛𝑛×𝑝𝑝 are the endogenous variables (here the ground-based measurements of GHI, DNI and DHI), 
𝑋𝑋𝑛𝑛×(𝑟𝑟+1) are the exogenous variables (here the variables from the NWP model, satellite measurements and 
calculated variables), 𝛽𝛽(𝑟𝑟+1)×𝑝𝑝 are the regression coefficients, and 𝜀𝜀𝑛𝑛×𝑝𝑝 are the measurement errors in the 
ground-based observations. 
 

The ground-based observations of the irradiance components measured by the SURFRAD and SOLRAD 
sites are available at 1-min time resolution. These measurements are averaged to 5-min resolution to reduce 
measurement noise and helps reduce the discrepancy between a point measurement from the 
SOLRAD/SURFRAD sites and the grid-cell average from the HRRR model. The errors in the 
SURFRAD/SOLRAD observations are modelled as: 
 

𝜀𝜀 = 5 + 0.02 ∗ (1 − cos(𝑠𝑠𝑠𝑠𝑠𝑠)) + 0.01 ∗ 𝑇𝑇2𝑚𝑚 + 0.005 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺.                                             (26) 
 
The SURFRAD/SOLRAD measurements are known to have error bars of ±5 W m-2 under ideal conditions. 
These errors get larger depending on various factors such as total irradiance, ambient temperature and 
solar zenith angle. The regression is performed using the advanced statistics package from IDL and analysis 
of variance (ANOVA) techniques are used to determine performance of the regression. The regression 
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coefficients that give the best performance are applied to the HRRR data to get irradiance estimates over 
the whole contiguous United States. Once the irradiance components are calculated, the power production 
from a photovoltaic panel can be estimated. 
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5.1. Estimating Power from Solar Photovoltaics 
 
A solar photovoltaic (PV) cell converts radiation incident on its surface to electrical power. A PV cell utilizes 
both the direct (DNI) and diffuse (DHI) radiation to produce current and a voltage that determines the 
power generated by the cell, as shown in Figure 16, 
 

𝑃𝑃𝑠𝑠 = 𝑉𝑉 ∗ 𝐼𝐼.                                                                                                (27) 
 

 
Figure 16: Schematic showing the direct and diffuse irradiance on a PV panel with respect to its tilt and azimuth orientation. 

The power performance of a PV cell is a complex function of several environmental factors (such as ambient 
temperature, wind speed, incident irradiation) as well as the PV cell characteristics. These environmental 
factors interact non-linearly and make estimating the power output from a PV cell difficult. The power 
performance model used by VCE® is an empirically derived model developed by Sandia National Laboratory 
and described in King et al. 2004. To calculate the voltage and current induced in the PV cells, Eqs (11) to 
(20) from King et al. 2004 are used. These equations attempt to model the non-linear response of a PV cell 
as an interaction of several factors each having well defined, experimentally derived, relationships with the 
independent variables affecting PV cell performance. 
 
To calculate the power produced from a PV cell requires being able to model the shape of the I-V curve of 
the PV panel accurately. The I-V curve of a PV cell shifts depending on the amount of incident radiation on 
the panel and ambient temperature. In order to replicate these effects accurately the King et al. 2004 paper 
models the voltage and current response separately using 3,300 measurements made over a range of clear 
and cloudy conditions, wide range of solar irradiance and module temperatures. The measured voltage 
values are first translated to a common temperature of 50oC to remove effects of temperature. The 
translated measurements of voltage and associated irradiance are regressed using Eqs (28) and (29) to find 
values of n, C2 and C3. 
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𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑁𝑁𝑠𝑠𝛿𝛿(𝑇𝑇𝑐𝑐). ln(𝐸𝐸𝑒𝑒) + 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑒𝑒(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑜𝑜)                                                      (28) 

 
𝑉𝑉𝑚𝑚𝑚𝑚 =  𝑉𝑉𝑚𝑚𝑚𝑚0 − 𝐶𝐶2𝑁𝑁𝑠𝑠𝛿𝛿𝑇𝑇𝑐𝑐 ln(𝐸𝐸𝑒𝑒) − 𝐶𝐶3𝑁𝑁𝑠𝑠(𝛿𝛿𝑇𝑇𝑐𝑐 ln(𝐸𝐸𝑒𝑒))2 − 𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣𝐸𝐸𝑒𝑒(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑜𝑜)                                (29) 

 
where, 𝑉𝑉𝑜𝑜𝑜𝑜 is the open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is the open-circuit voltage constant, 𝑉𝑉𝑚𝑚𝑚𝑚  is the voltage at 
maximum power, 𝑉𝑉𝑚𝑚𝑚𝑚0 is the constant for voltage in I-V curve,  𝛿𝛿(𝑇𝑇𝑐𝑐) = 𝑛𝑛 𝑘𝑘 (𝑇𝑇𝑐𝑐 + 273.15)/𝑞𝑞 is the thermal 
voltage per cell at temperature 𝑇𝑇𝑐𝑐 , 𝑛𝑛, 𝑐𝑐2,  𝑐𝑐3 constants for voltage formula, 𝑞𝑞 is the elementary charge 
(1.60218e-19 coulomb), 𝑘𝑘 is the Boltzmann’s constant (1.38066e-23 J K-1), 𝑁𝑁𝑠𝑠 number of cells in series in a 
module’s cell-string, 𝑇𝑇𝑜𝑜 reference cell temperature, and 𝑇𝑇𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑒𝑒𝑎𝑎+𝑏𝑏∗𝑊𝑊𝑊𝑊 + 𝑇𝑇2𝑚𝑚 is the cell temperature 
inside the module (with 𝑊𝑊𝑊𝑊 being the wind speed,  𝑇𝑇2𝑚𝑚  the 2-m temperature, and 𝑎𝑎,  𝑏𝑏 constants). 
 
In a similar way, to determine the dependence of module current on incident irradiation, the current values 
are translated to a common temperature and regression coefficients, Co, C1, C4, C5, C6, C7, are determined 
using Eqs (30), (31) and (32). 
 

𝐼𝐼𝑚𝑚𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶0𝐸𝐸𝑒𝑒 + 𝐶𝐶1𝐸𝐸𝑒𝑒2}�1 + 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑜𝑜)�,                                                             (30) 
 

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑥𝑥𝑥𝑥{𝐶𝐶4𝐸𝐸𝑒𝑒 + 𝐶𝐶5𝐸𝐸𝑒𝑒2}{1 + 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑜𝑜)},                                                                 (31) 
 

𝐼𝐼𝑥𝑥𝑥𝑥 = 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥{𝐶𝐶6𝐸𝐸𝑒𝑒 + 𝐶𝐶7𝐸𝐸𝑒𝑒2}�1 + 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑜𝑜)�,                                                              (32) 
 
where, 𝐼𝐼𝑚𝑚𝑚𝑚  is the current at maximum power, 𝐼𝐼𝑚𝑚𝑚𝑚0 is the constant for current in I-V curve, 𝐼𝐼𝑥𝑥 is the current 
at module V = 0.5 𝑉𝑉𝑜𝑜𝑜𝑜, 𝐼𝐼𝑥𝑥𝑥𝑥 is the current at module V = 0.5 (𝑉𝑉𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑚𝑚𝑚𝑚), 𝐼𝐼𝑥𝑥0 is the constant for current in I-V 
curve, 𝐼𝐼𝑥𝑥𝑥𝑥0 is the constant for current in I-V curve, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 is the normalized temperature coefficient for 𝐼𝐼𝑚𝑚𝑚𝑚,  
𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼  is the normalized temperature coefficient for 𝐼𝐼𝑠𝑠𝑠𝑠, the short-circuit current. 
 
In the above equations, Ee is the effective irradiance to which the PV cells in the module respond to and is 
given by 

𝐸𝐸𝑒𝑒 = 𝑓𝑓1 ∗ 𝑆𝑆𝑆𝑆 ∗ �
𝐸𝐸𝑏𝑏𝑓𝑓2 + 𝑓𝑓𝑑𝑑 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷

𝐸𝐸𝑜𝑜
� ,                                                                         (33) 

 
where,  𝐸𝐸𝑏𝑏 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ cos(𝐴𝐴𝐴𝐴𝐴𝐴), which is the beam component of the solar irradiance incident on module 
surface, Eo is the reference solar irradiance (1000 W/m2), 𝑓𝑓1 is the relation between solar spectral variation 
and short circuit current given by 𝑓𝑓1 = 𝑎𝑎0 + 𝑎𝑎1𝐴𝐴𝐴𝐴𝑎𝑎 + 𝑎𝑎2𝐴𝐴𝐴𝐴𝑎𝑎

2 + 𝑎𝑎3𝐴𝐴𝐴𝐴𝑎𝑎
3 + 𝑎𝑎4𝐴𝐴𝐴𝐴𝑎𝑎

4, where 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 are 
constants and AMa is the absolute air-mass (dimensionless), 𝑆𝑆𝑆𝑆 is the soiling factor, 𝑓𝑓2 is the relation 
between optical influences and solar angle-of-incidence (𝑓𝑓2 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑏𝑏2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑏𝑏3 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴3 + 𝑏𝑏4 ∗
𝐴𝐴𝐴𝐴𝐴𝐴4, where 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 are constants, 𝐴𝐴𝐴𝐴𝐴𝐴 = cos𝛽𝛽 cos𝜃𝜃𝑧𝑧 − sin𝛽𝛽 sin𝜃𝜃𝑧𝑧 cos𝛾𝛾 is the angle of incidence, 
where 𝛽𝛽 is tilt angle of the panel with respect to the ground,  𝜃𝜃𝑧𝑧 is solar zenith angle, 𝛾𝛾 is the azimuth angle 
with respect to the north-south, and 𝑓𝑓𝑑𝑑 is the relative response to diffuse versus beam irradiance). 
 
The empirical functions f1(AMa) and f2(AMa) quantify the effect of solar spectral variation and optical 
influences on short-circuit current. These functions are determined from laboratory testing and account for 
systematic effects that occur during clear sky periods. Absolute airmass provides a relative measure of the 
path length solar radiation has to travel at a given solar zenith angle compared to a solar position of directly 
overhead. 
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The performance of a PV panel also depends on the module temperature as seen in Eqs (28) - (32).  The 
thermal response of a PV cell can be modelled as 
 

𝑇𝑇𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑒𝑒𝑎𝑎+𝑏𝑏∗𝑊𝑊𝑊𝑊 + 𝑇𝑇2𝑚𝑚.                                                                                  (34) 
 
The simple model for expected module temperature given by Eq. (34) has been shown to have accuracy of 
±5 oC, which results in uncertainty in power output of less than 3%. 
 
The constants in the power generation model are obtained from De Soto et al. 2006 and the NREL System 
Advisory Model (SAM). It is assumed that the individual panels are placed far enough apart so as not to 
create any shadowing effects. The above formulation is used to calculate solar power production for the 
following technologies: 

(a) Fixed PV panel for various tilt angles (0o, 15o, 30o, 45o, latitude tilt), 
(b) One-axis tracking at latitude tilt, 
(c) Two-axis tracking. 

 
Finally, the calculated power output is de-rated based on expected losses from wiring and soiling (4.5% 
loss), AC/DC conversion (3.3% loss) and presence of snow on the panels (assume no production if snow is 
present – for fixed panels at 0o and 15o elevation). WIS:dom® can update the magnitude of these losses to 
account for improved technology in the future or panel performance degradation with age.   
 
The average solar power capacity factor over the contiguous United States for 2014, 2015, 2016 and the 
three-year average is shown in Figure 17. It is observed that the south-west region of the US has the best 
solar potential. Comparing the solar power capacity factors from Figure 17 and the wind power capacity 
factors from Figure 7, it is observed that locations of the best solar resource are broadly complementary to 
locations of the best wind resource. The south-west and the south-east have the best solar potential over 
the CONUS which as seen from Figure 7 are not always the best locations for wind power. However, several 
locations in the Great Plains are seen to have good wind and solar power capacity factors. It is also observed 
from Figure 17 that similar to the wind power capacity factors, the solar power capacity factors also show 
significant inter-annual variability. The year 2016 is seen to have significantly higher solar power capacity 
factors especially in the south-west. 
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Figure 17:  Annual average solar capacity factors for 2-Axis panels. (a) for year 2014, (b) for year 2015, (c) for year 2016 and (d) three-

year average 

In order to study the variability in the solar power capacity factors, the difference between the yearly average 
solar power capacity factors is calculated with respect to the three-year average as shown in Figure 18. It is 
seen from Figure 18 that the year 2014 had lower than average solar power capacity factors by 1.5 to 2 
percentage points (a 5 – 10% reduction in expected solar power capacity factors depending on location). 
This reduction in solar power capacity factors in 2014 was driven in some part by the persistent polar vortex 
setup over much of the CONUS from January through March 2014. In 2016, the solar capacity factors were 
much higher compared to years 2014 and 2015 in spite of 2016 summer being the hottest on record at the 
time, which should reduce PV performance. However, the lower than normal moisture in the air ensured 
enough clear sky radiation for this year to produce higher than average solar power capacity factors. The 
increase was dominant over the western part of the CONUS as seen from the bottom panel of Figure 18. As 
further documented in Figure 18, the year 2015 had lower than average solar power capacity factors, 
especially over the western part of the CONUS. The lower than average solar power capacity factors 
combined with the lower than average wind power capacity factors in year 2015 (see Figure 7) make it a 
particularly difficult year for renewable energy generation. If capacity expansion planning was performed 
using weather data from year 2015 alone, it would vastly under-predict the utility of renewables to meet 
demand. 
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Figure 18:  Difference in annual average capacity factor for a 2-axis PV panel compared to the three-year average. 

 
The solar power capacity factors are calculated for the following technologies: 

1. Rooftop Solar, 
2. Fixed panels with a 0-degree tilt, 
3. Fixed panels with a 15-degree tilt, 
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4. Fixed panels with a 30-degree tilt, 
5. Fixed panels with a 45-degree tilt, 
6. Fixed panels with a “latitude” degree tilt, 
7. Single axis panels with a “latitude” degree tilt, 
8. Dual axis panels. 

 
The technologies for utility scale PV range from simplest and least cost (Fixed panels with 0-degree tilt) to 
most complex and highest cost (dual-axis panels). The fixed panels at 0-degree tilt will result in the lowest 
power capacity factors, while the dual-axis panels will result in the highest as they track the sun across the 
sky to ensure maximum possible power production (Figure 19a and 19c).  WIS:dom® can determine using 
the weather data if the added complexity of the PV technologies is worth the additional cost in terms of 
increased power production. As seen from Figure 19b, Fixed panels at various elevation angles (with respect 
to the latitude of the geographic location) are the optimal choice for most of the CONUS with only the 
northern-most part of the country justified in using either single or dual axis tracking. 
 

 
Figure 19:  The solar power dataset. (a) Mean solar PV capacity factor for fixed panel at 0o elevation for year 2014 (b) Mean solar PV 

capacity factor for a two-axis tracking PV panel for year 2014 (c) Optimal PV panel type for the CONUS (d) Utility PV siting 
constraints for the CONUS 

In Figure 20, the CV is shown for all the various combinations of the 5 years of Solar data available. The 
average CV of all events for each count, r, is also plotted. Each year will bring new weather events to the 
dataset that were not experienced previously, thus increasing the variability over time. This average value 
should increase as more years are added, as it does here. For Solar, the CV is > 100%. This shows that the 
standard deviation is larger than the mean of the resource.  
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Figure 20:  The Coefficient of Variation shown using 2014-2018 data over 1- to 5-year groupings for the Solar Resource across MISO. 

CV is shown for all combinations within each grouping. 

When looking at the individual years, the year 2015 shows a higher extent of variability in relation to the 
mean. The average capacity factor from Solar for that year is one of the lowest years. The standard deviation 
though, is quite high. Combining these two together gives that higher extent of variability. Calendar year 
2018 shows the lowest extent of variability in relation to the mean. The average capacity factors in 2018 for 
Solar were not the highest, but also not the lowest amongst all the weather years. The standard deviation 
was on the lower side and brought the CV down for that year. The solar dataset shows much lower inter-
annual variability compared with the wind dataset. 
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6. Discussion on the Wind and Solar Datasets 
 
VCE® restructures the spatial datasets discussed above and provides a time series product for every 3-km 
grid cell available across the CONUS. This allows for viewing the solar and wind power potential over an 
entire year, or in this case for MISO, every year for years 2014-2018. This is over 800,000 sites that can be 
viewed in this context across the CONUS.  
 
The time-series analysis of the wind and solar resources bring out some interesting characteristics that can 
be leveraged by WIS:dom® to minimize cost through an optimal mix of these energy sources.  In many 
regions of the US, wind and solar exhibit complementary behavior diurnally, solar being active during the 
day and wind picking up at night. This behavior is especially true in the great plains where the nocturnal 
low-level-jets start like clockwork during the stably-stratified nighttime periods. To demonstrate this 
complementary behavior, wind and solar power capacity factors from a site in Iowa are diurnally averaged 
over the year 2014. The resulting wind and solar power capacity factors from the diurnal average are shown 
in Figure 21a and demonstrate the complementary nature of the wind and solar resource. At this location, 
the correlation coefficient between the diurnally averaged wind and solar capacity factors over a year was 
found to be -95%. While the diurnal mean of the wind and solar power capacity factors show a smooth and 
almost perfectly anti-correlated behavior, the daily power capacity factors are much more variable (Figure 
21b). The intra-day and the inter-day variability of wind and solar resource is the central challenge 
WIS:dom® has to solve to integrate renewables into the electricity system. 
 



©Vibrant Clean Energy, LLC                                                                                                   Boulder, Colorado 
info@vibrantcleanenergy.com April 2020 VibrantCleanEnergy.com 

- 39 - 

 
Figure 21: Comparison of wind and solar power capacity factors for a location in Iowa. (a) Diurnally averaged over year 2014 power 
capacity factors for two-axis tracking solar panel and 100-m hub height wind turbine. (b) 5-min power capacity factors from year 

2014 for two-axis tracking solar panel and 100-m hub height wind turbine. 

 
Another way to average out (apart from temporal averaging) the variability observed in the wind and solar 
resource is to spread the generation over larger geographic areas. This can be illustrated with the help of 
wind solar power capacity factors over the MISO region. A given location within the MISO footprint can 
have substantial intra-day and inter-day variability (as shown in Figure 21) due to local weather events such 
as scattered clouds or spatial variability in wind and temperature fields.  However, as the power capacity 
factors are calculated over larger and larger geographical footprints, a significant portion of this variability 
gets averaged out and results in smoother profiles of wind and solar power capacity factors. This is 
illustrated in Figure 22a for one location within LRZ5 of MISO and the average solar power capacity factor 
over the whole of LRZ5. It is observed that the power capacity factor profiles for the LRZ5 average are much 
smoother than the individual location, although they could be lower in magnitude during some periods. 
Similar behavior is observed in the wind power capacity factors, where the intermittency due to wind lulls 
and gusts gets averaged out as the power capacity factor is calculated over a larger geographic footprint 
(Figure 22b).   
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Figure 22: Comparison of solar power capacity factors from a location in region 5 of MISO versus the average solar capacity factor 

over the region 5. The times are in UTC. 

Each individual MISO LRZ will still exhibit variability in the wind and solar power capacity factors.  This 
variability within each MISO LRZ can be further reduced by increasing the geographic averaging over the 
whole MISO footprint. As shown in Figure 23, this further reduces the variability and results in much 
smoother profiles of wind and solar power capacity factors.   
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Figure 23:  Comparison of the solar power capacity factors from the various MISO local resource zones with the solar power capacity 

factor over the full MISO footprint. 

A third way to reduce variability in renewable energy generation is by combining generation from wind and 
solar. To demonstrate this, it is assumed that each HRRR grid cell within MISO has equal amount of wind 
and solar capacity installed. The coefficient of variability (CV) of the power capacity factors for wind, solar 
and wind+solar is now calculated over increasing geographic footprints. The geographic averaging starts 
from the central MISO LRZ (Region 5) and expands outwards symmetrically north-south until the full MISO 
footprint is covered. The CV of the power capacity factors for wind, solar and wind+solar over the increasing 
number of LRZs is shown in Figure 24.   
 

 
Figure 24: Coefficient of variability of power capacity factors of wind, solar and wind+solar calculated over various number of LRZs 

starting from the center (Region 5) and spreading outwards until the full MISO footprint is covered. 
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It is observed from Figure 24 that there is about a 30-percentage point reduction in variability in the wind 
power capacity factor as the geographic area under consideration increases from one region to the full 
MISO footprint. The variability in the solar power capacity factor starts out much higher compared to the 
variability in the wind power capacity factor due to the strong diurnal pattern in solar power. The reduction 
in variability in the solar power capacity factor due to increasing the geographic footprint is about 18-
percentage points. While this is a significant reduction in variability, it would have been higher if the MISO 
region spanned a larger longitudinal extent, which would increase the amount of time solar insolation was 
available. Finally, it is observed that the coefficient of variability of combined wind and solar power capacity 
factors starts out being the lowest and decreases further to stay the lowest as the geographic area over 
which the CV is calculated is increased. The main reason the combined wind and solar CV is the lowest can 
be seen from Figure 21(a) where the diurnal variability of wind and solar generation gets reduced 
significantly once the two sources of generation are combined. 
 
In addition to the above three ways to reduce the variability of the wind and solar generation, WIS:dom® 
can employ another technique to reduce variability, which is through strategically deploying wind and solar 
installation such that the installed generation weighted power capacity factors show a reduced variability. 
It is observed from Figure 25 that WIS:dom® does just that. Figure 25 shows a comparison of CV for the 
MISO regions, calculated as explained previously, with the CV of WIS:dom® installed generation weighted 
power capacity factor calculated for each investment period. For the scenarios modeled by WIS:dom®, the 
optimal capacity expansion occurs over ten investment periods, or iterations, to evolve the grid from its 
current state to the “goal” state. The model needs multiple investment periods because there are limitations 
to the amount of turnover of the resource mix that can happen in each iteration. Therefore, in the plots 
below, calculation of CV of the power capacity factors for the MISO region and for WIS:dom® installed 
capacity occurs in ten steps each. While each of the ten steps are not completely inter-comparable as 
WIS:dom® can choose to install generation at any location within the full MISO footprint, they show 
progress towards the end goal and the final step is completely inter-comparable. 
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Figure 25: Comparison of coefficient of variability between wind/solar power capacity factors calculated for various coverages of the 

MISO region versus the WIS:dom installed capacity weighted power capacity factors calculated for increasing percentage of 
renewable energy penetration. 

 
It is observed that the CV at the first step for installed capacity weighted power capacity factors for 
WIS:dom® scenarios are significantly lower than the CV calculated for the MISO region. The reason for this, 
as explained before is that WIS:dom® has the advantage of being able to build generation anywhere over 
the full MISO footprint.  It is observed from Figure 25 (a) and (b) that the CV of WIS:dom® installed weighted 
power capacity factors quickly converges to the minimum possible value with departures from the minimum 
occurring only to meet a possibly difficult demand period. 
 
Figure 25(c) shows an interesting feature of the CV for the combined wind+solar installed by WIS:dom®.  It 
is observed that the coefficient of variability starts out low and reduces as the WIS:dom®  run progresses. 
However, past 70% of the goal, the variability starts to pick and increases to about 12-percentage points 
above the starting value. The main reason for this is that as the model run progresses, WIS:dom® has to not 
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only reduce variability, but meet demand at lowest possible cost.  The most effective way to do this, as it 
turns out, is by installing a lot of utility scale PV (at twice the rate of wind installation). The main effect of 
the increased utility PV is that the solar variability has a much higher weight on the combined wind+solar 
variability value, which results in an increase in the CV. It should be noted that the final CV value is still 
almost half the magnitude of solar only CV. This trend in the installed generation weighted power capacity 
factor illustrates the challenges involved in meeting 100% of the demand using renewables alone. Meeting 
100% of the demand using only wind or only solar is even harder as seen from Figure 26. 
 
 

 
Figure 26: Coefficient of variability for scenarios of meeting demand through 100% wind (left) and 100 solar (right). 

It is observed from Figure 26 that CV increases dramatically when WIS:dom® has to meet demand through 
either wind or solar alone. The increase in CV is significantly smaller when meeting demand through wind 
alone versus meeting demand through solar alone. The main reason for this being the MISO region has 
reasonably good wind resource which does not have as strong a diurnal trend as the solar resource.   
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Finally, when the whole Eastern Interconnect (EIC) is considered, WIS:dom® is able to site generation of 
wind and solar such that the CV value is further reduced. It can be seen from Figure 27 that the CV for 
WIS:dom® installed generation weighted solar capacity factor starts out being approximately 5% lower for 
the EIC region compared to MISO alone. 

 
Figure 27: Comparison of coefficient of variance for the WIS:dom installed generation weighted wind and solar power capacity 

factors the MISO region versus the full EIC region. 

 
It has to be noted that in all the above discussion, the impact of storage on variability is not considered.  
Therefore WIS:dom® can choose any of the above ways to handle the variability of renewable generation 
while meeting demand. In addition, it can build either storage or transmission to ensure energy is available 
where and when it is needed.   
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7. Supplying Demand Profiles Using VREs 
 
Generation capacity is built on the basis of the maximum load that has to be met, which occurs only for a 
very small duration of time. This behavior of the load can be demonstrated using the load duration curve 
plotted using model output for the 100% through Wind and Solar scenario as shown in Figure 28. The 
supply duration curve for wind and solar are also shown in Figure 28.  It is observed that in the initial 
investment period, wind and solar contribute only a small portion towards meeting the load. By the final 
investment period, wind and solar are required to meet 100% of the load and hence have substantial 
curtailment.   
 
The combined wind and solar duration curves show some interesting characteristics.  It is pretty much the 
same as the wind duration curve for the initial investment period as there is only a very small amount of 
solar on the grid.  However, by the final investment period, there is significant contribution from solar.  The 
combined wind and solar duration curve can be broken down into two parts.  The portion of the curve to 
the left of the 50% mark on the x-axis runs parallel to the solar duration curve and dominated by solar.  This 
behavior is expected as wind is usually weaker during the day and there is significantly more solar installed 
capacity compared to wind by the final investment period.  To the right of the 50% mark on the x-axis we 
see that wind and solar work together to meet the load. 
 

 
Figure 28: Duration curves as fraction of load for wind (green solid line), solar (orange solid line), load (blue solid line) and combined 

wind and solar (red solid line) for the initial and final investment periods. 

It may seem from Figure 28 that there is significant curtailment of energy (mainly through solar).  However, 
Figure 28 does not represent the energy that is sent to storage. To properly represent the stored portion of 
the energy, the duration curves are re-drawn with respect to the altered load, which is the demand plus the 
energy sent to storage. The duration curves with respect to altered load are shown in Figure 29. 
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Figure 29: Duration curves as fraction of altered load for wind (green solid line), solar (orange solid line), altered load (blue solid line) 

and combined wind and solar (red solid line) for the initial and final investment periods. 

As seen from Figure 29, there is no difference to the duration curves for the initial investment period as 
there is (almost) no storage on the grid. However, for the final investment period, there are substantial 
differences observed. The load duration curve has a hump in the middle portion which is from energy 
transferred to storage.  The extremes of the altered load duration curve are not different to the original load 
duration curve. It is also observed that the magnitude of energy actually curtailed is now accurately 
represented. It is observed from Figure 29 that peak energy curtailment is about 75% of the altered load. 
 
The duration curves for wind, solar and load as percentage of altered load for the MISO only region and 
combined MISO and EIC are shown in Figure 30. It is observed when the MISO+EI region is considered 
together, the curtailment percentage is reduced appreciably.   
 

 
Figure 30: Duration curves as fraction of altered load for wind (green solid line), solar (orange solid line), altered load (blue solid line) 

and combined wind and solar (red solid line) for the MISO region only and combined MISO and the Eastern Interconnect. 

An important consideration in planning generation is to ensure that it is available when it is needed most, 
during the peak demand periods. When a significant portion of the demand is met through VREs, it can 
help to “shave demand peaks” and thus increasing grid stability. It is useful to study the percentage of 
demand satisfied by a generation type in order to understand their relative importance in meeting load 
during the highest demand periods. The generation as a percentage of the original load and net load is 
plotted in Figure 31. The net load is defined as the original load minus the generation from other sources, 
DSM and storage flux. It is observed that at the final investment period, there is significant amount of over 
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generation from wind and solar. This over-generation does not capture the energy movement from and to 
storage and DSM. Therefore, a better way to understand the contribution of a generation resource is by 
plotting the generation as a percentage of net load as shown in bottom panel of Figure 31. 
 

 
Figure 31:  Generation as a percentage of load during the highest few demand hours 

When the contribution of each resource during the highest demand periods is plotted as a percentage of 
the net load, the importance of each resource becomes much clearer. It is observed that both wind and 
solar play equally important roles in ensuring the demand is met. It should be noted that when considering 
net load, the actual time periods of highest net load are different when considering wind, solar, combined 
wind, solar and storage. This is due to the generation from wind+solar as percentage of net load being 
lower than similar metrics of wind or solar alone.     
 
It is observed that wind, solar and storage is dispatched at more than 100% of the net load.  The reason 
these dispatches are larger than 100% of the net load is due to the fact that there are losses associated with 
transmission, and round-trip efficiencies (for storage). Therefore, the additional percentage above 100% 
accounts for the inefficiencies associated with getting the energy to where the demand exists. Similar 
analysis is done for the full EIC region (Figure 32) and it is found that there was no significant difference in 
behavior of generation from the various sources. It is observed that in the full EIC region, wind dispatch is 
approximately 115% of net load. The reason for this is the larger distances wind needs to be moved to get 
to the load centers on the east coast. 
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Figure 32:  Generation as percentage of net load for MISO region only (top) and for the full EI region (bottom). 

It is interesting to study the trend in contribution of generation from the various resources as a function of 
investment period. Figure 33 shows the percentage of load and net load met through various sources of 
generation during the highest ten periods of demand. As explained previously, when contribution from 
each source of generation is plotted, it gives an impression that wind and storage are not playing as 
important a role as solar during periods of highest demand. In addition, it conveys that a large amount of 
over generation (250%) is taking place to meet demand. However, the reality is a bit more nuanced. When 
contributions of generation from each resource are plotted as function of the net load, it is seen that each 
resource plays an important part in meeting the load. In addition, it becomes clear how storage starts to 
get deployed to meet periods of high demand increasingly towards the later investment periods and 
eventually being used to meet 100% of the net load at the final investment period. 
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Figure 33:  Generation as percentage of load (top) and net load (bottom) for the highest 10 hours of demand. 

Figure 34 shows a comparison of generation contributions from each source for the MISO only scenario 
and the full EIC region.  For brevity, the generation as percentage of net load is only shown for the two 
scenarios. 
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Figure 34:  Generation as percentage of net load for MISO region only (top) and for the full EI region (bottom). 

It is seen from Figure 34 that there are appreciable differences in resource mix to meet difficult demand 
periods between the MISO only case and the full EIC case.  For the MISO only case, wind plays a more 
important role compared to the full EIC case. This is to be expected as MISO has substantially better wind 
resource on average versus the full EIC region. In addition, space for wind farm development is much more 
constrained in the eastern United States due to higher population densities. Therefore, storage is seen to 
come into play earlier as well as ramp up slightly faster compared to the MISO only case.   
 
The contribution of a generator in meeting peak demand is known as resource adequacy. The fraction of a 
generator’s nameplate capacity that can be counted towards resource adequacy is known as capacity credit. 
The capacity credit for a particular generator can be estimated using the duration curve method. The 
duration curve method estimates capacity credit as the reduction in highest peak net load hours relative to 
the highest load peak hours. The net load for a generator is calculated by subtracting the generation that 
went to meeting load from that generator from the full load. Using the duration curve method, the capacity 
credit per MW of installed capacity and incremental capacity credit per incremental MW of generation 
added for each technology can be determined as the model steps through towards the end goal. 
 
Figure 35 shows the capacity credit per MW of installed generation and the incremental capacity credit per 
MW of generation added for wind, solar and wind+solar for the full EI region in the 100% wind+solar 
scenario. It is observed that as the penetration of renewables increases, the capacity credit for all renewable 
generation steadily decreases. There is almost a 30% drop in the solar capacity credit going from 10% 
penetration to 20% due to the fact that the installed solar generation increases by 3,800% in this step and 
it goes from being a negligible part of the generation mix to a more significant portion. Storage shows a 
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different trend compared to the renewable generation. It is seen that capacity credit of storage increases 
from the first step to the second, during which some firm generation such as coal, CCGT and CT are retired 
and hence increase the value of storage. From the second iteration to 40% of renewable penetration, the 
capacity credit from storage is seen to decrease, which is from a combination of wind and solar installations 
that meet demand. From 40% penetration level to 100% the value of storage starts to increase again as it 
starts being used to firm up the renewable generation.   
 

 
Figure 35: Capacity credit per MW of installed capacity for wind, solar and wind+solar, calculated over the full EI region for 100% 

wind+solar scenario. 

Given the trend in capacity credit seen from Figure 35, it gives the impression that adding more renewables 
reduces their effectiveness on the grid. However, a different trend emerges when the capacity credit is 
calculated based on the altered load. Figure 36 shows the capacity credit for the various renewable 
generation penetrations calculated using the altered load duration curve. It is seen from Figure 36 that the 
solar capacity credit still drops from 10% penetration to 20%, but then starts to gradually increase when we 
go to 100% penetration. The capacity credit for wind+solar stays constant irrespective of the penetration 
level, which illustrates how WIS:dom® strategically deploys wind and solar to get maximum benefit with 
respect to meeting peak demand.   
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Figure 36: Capacity credit calculation from altered load. 

It is observed that storage shows a different trend as well. Similar to Figure 35, the jump in capacity credit 
of storage is still observed going from penetration level of 10% to 20% from retirement of other firm 
generation. However, it is seen that storage capacity credit continues to grow linearly until it reaches 105% 
at 100% wind and solar penetration. The storage capacity is at 105% to account for transmission losses and 
round-trip efficiencies. Therefore, it is seen that as other forms of firm generation are retired, storage 
reaches its full capacity credit to firm up the generation from renewable sources. 
 
The contribution of wind, solar and storage in meeting daily peak altered loads are presented in Figure 37. 
Figure 37 shows the fraction of the daily peak altered load satisfied by a generation type during the peak 
load hour over the course of the year and increasing renewable energy penetration. It is observed from 
Figure 37 that solar contributes the most during peak load hours during the summer period, where the 
peak load hours are usually during the day time. It is also observed that the contribution from solar at the 
peak load hour reaches its maximum value at 90% renewable penetration. At 100% renewable penetration, 
some of the peak demand is met by storage as it is more advantegeous to deploy compared to adding 
more solar.   
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Figure 37: Generation from wind, solar and storage as a fraction of daily peak altered load over a one-year period and with 

increasing renewable penetration levels.  The sum of fractional generation from wind, solar and storage at 100% penetration add up 
to 1 or greater as there is no-longer any other generation type. 

Wind and storage dominate generation during peak load hours during the winter, late fall and early spring 
periods. The reason for this is that the peak load hours are shifted to evening periods during these seasons 
where generation from wind dominates. However, wind is unable to meet all the demand and uses storage 
to meet the rest of the peak load. Similar to solar, it is seen that wind reaches its maximum peak load 
fraction between 80% and 90% renewable penetration levels. Beyond this it is more advantageous to deploy 
storage to meet peak demand. 

  



©Vibrant Clean Energy, LLC                                                                                                   Boulder, Colorado 
info@vibrantcleanenergy.com April 2020 VibrantCleanEnergy.com 

- 55 - 

8. Wind and Solar Forecasts 
 
In addition to understanding and having insight into wind and solar capabilities across the United State 
with the power datasets, it is also prudent to know what was forecasted historically as well. This can provide 
further insight into the behavior of wind and solar dispatch in real-time. VCE® has provided wind and solar 
forecasts to MISO for five years, 2014 through 2018. The Forecast Hours 02 and 06 were provided. 
 
The forecasts are based on the NOAA HRRR weather forecast model. In the case of missing HRRR forecast 
output in the VCE® historical archives, the forecasts for the missing periods were created such that no 
missing data exists in the datasets. For wind, any missing gaps with a given year are filled using linear 
interpolation. For Solar, persistence is utilized where the corresponding hour of the previous day fills the 
missing value of the current day. The forecast data is available at hourly time intervals from the model runs 
made at the top of every hour.   
 
The process for creating the forecasts is very similar to that of the power datasets overall. One exception is 
2017 Forecasts, which is described in more detail below. The forecasts are originally processed spatially in 
the same way as the power datasets. This is reviewed in great detail earlier in this document. The forecasts 
are also “restructured” to provide temporal data for over 800,000 sites across the CONUS. As an example, a 
file for Site 814293, shows the running Hour 02 forecast for that day. A similar file exists for the Hour 06 
forecast. These can be used to see changes in the forecast over time, but also in comparison to the power 
dataset or any observations known. For further explanation, Forecast Hour 02 is a forecast generated on 
January 27th 2015 0800 UTC that is valid for 10 UTC on the same day. Forecast Hour 06 is a forecast 
generated on January 27th 2015 0800 UTC that is valid for 14 UTC on the same day. All metrics shared below 
are for a 100-meter hub height for the wind and a single-axis panel for solar. 
 
There are some differences in processing between the Forecasts and the power datasets. As we have 
improved our own processing over time, the more recent forecasts for 2017 and 2018 also have 
improvements in the final deliverables that were not yet available when 2014-2016 Forecasts were delivered. 
A high-level description of each year is provided here. Much of this will be pertinent for the forecast metrics 
provided further below in this report. 
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8.1. Forecasts Hour 02 and Hour 06 (2014 – 2016) 
 
The main difference in methodology when creating these Forecasts for these years compared with the 
power dataset calculations is in the solar power forecast calculations.  As described in the previous sections, 
before calculating the solar power capacity factors, the solar irradiance quantities are regressed with the 
ground-based observations to remove bias errors caused by inaccurate representation of the clouds in the 
model. For the forecast datasets of 2014-2016, a new regression is not performed. Instead the regression 
coefficients from the power calculations of the same year are used. This ensures that the regression only 
corrects for the model bias observed in the initialization and does not correct for the errors due to inaccurate 
model physics. This method ensures that the power forecasts retain the error characteristics expected from 
real-time forecast runs. This was updated in later Forecast years, however, as we will describe below. 
 
Neither the Forecasts or power datasets for these three years have the following updates for the wind 
Resource:  

1. Introduction of the effects of turbulence  
2. Capturing turbine response to air density changes 

 
Neither the Forecasts or power datasets for these three years have a Bi-Facial PV series in the Solar Resource 
options. 
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8.2. Forecast Hour 06 (2017) 
 
For this year, the source VCE® used for historical HRRR Forecast files does not have actual Forecast Hour 02 
or Forecast Hour 06 data to pull into VCE®’s historical archives. Our source did have Forecast Hour 00. This 
is what the Power Dataset is based off of for this year. Since other Forecast Hours were not available, a 
creation of these series was performed. As such, there will be some behavior in this year that is not as 
uniform or congruent with the Forecasts provided for other years. This will be apparent in many of the 
metrics shown below as well. To create the Forecasts for this year for both the Wind and Solar Resource, 
VCE® executed the following: 
 
Wind:  
 
We calculated the Percentage Error in 2018 between the Forecast Hour 06 and the Power Dataset and 
applied it to the Power Dataset in 2017. The Power Dataset for 2017 was based off of Hour 00, which was 
available historically: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 2018𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 06  −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2018

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2018
 

 
The Percentage Error is then applied to the Power Dataset of 2017 to Create Forecast Hour 06 of 2017. 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2017𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 06 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑃𝑃𝑃𝑃𝑤𝑤𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2017 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2017 
 
In some situations, this method can create unrealistic results. To limit what the Percentage Error can do the 
following stipulations were applied: 

1. When the Power Dataset 2018 == 0, the Percentage Error == 0.  
a. This will artificially lower the errors in 2017 since the 2017 Hour 06 Forecast will be equal 

to the Power Dataset for that year when the criterion is met. This artifact will be seen in the 
error metrics further down.  

b. Setting this stipulation, prevents division by 0.  
2. When the Forecast 2018 for Hour 06 == 0, the Percentage Error becomes -1.0. Large negative biases 

can arise in the Forecast from this if a bound is not placed on the 2018 Forecast Hour 06. VCE® caps 
this behavior with the following: 

a. If (Forecast 2018 for Hour 06 == 0) AND (Percentage Error < -0.94), the Percentage Error 
== 0. 

b. This will also artificially lower the errors in 2017 since, once again, the 2017 Hour 06 Forecast 
will be the same as the Power Dataset. 

c. This improves the Magnitude Bias (defined below, but in short is the average Forecast 
divided by the average of the Power Dataset) of the Forecast Hour 06 in 2017. Without this 
bound, the Forecast Hour 06 becomes low biased compared to the Power Dataset. This is 
opposite to any other forecast year provided, where the forecast values for wind are 
generally higher than the power dataset. With this bound, the Magnitude Bias lines up with 
other Forecast years in terms of direction. The Magnitude Bias comes closer to 1.0 in 2017 
where the average of the Forecast in equal to the average of the power dataset. This means 
the Magnitude Bias is also improved in 2017 due to lower forecast errors. 

3. The previous two bullets innately reduce the Forecast error that can be seen in 2017. To further aim 
to limit the impact of the previous two bullets, VCE® averaged the Percentage Error before and 
after periods where the Power Dataset 2018 == 0. The same is done around periods when Forecast 
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2018 for Hour 06 == 0 and Percentage Error < -0.94. There are periods where the Power Dataset 
of 2018 are flatlined at zero for some time where this method will not make any changes. As such, 
errors for 2017 will still remain lower than 2018. However, during testing we saw this additional step 
bring in some more realistic error for about 3-4% of the year.  

4. If left unbounded, the Percentage Error can become quite large. VCE® caps this calculation to +/- 
0.95. This means that the error in the 2017 Forecast for Hour 06 cannot be greater or less than +/- 
95% of the Power Dataset in 2017. 

a. This will also artificially lower the errors in 2017 as it is possible to have higher differences. 
However, this also limits periods where the Percentage Error can become quite large and 
also create some unrealistic differences. 

5. For quality control: 
a. If the created Forecast Hour 06 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 06 < 0% (meaning 0% capacity factor), it is set to 0%. 

 
There were several updates VCE® made to the 2018 Wind Forecasts. Those are described below in detail. 
These changes would innately reflect in the metrics of 2017 since 2018 performance is used to generate 
2017 Forecasts.  
 
Solar:  
 
We calculated the Percentage Error in 2018 between the Forecast Hour 06 and the Power Dataset. It starts 
similar to wind but then some additional steps are taken for this resource. The Percentage Error is then 
applied to the Power Dataset of 2017 to Create Forecast Hour 06 of 2017. 
 
In some situations, this method can create unrealistic results. To limit what the Percentage Error can do the 
following stipulations were applied: 

1. If left unbounded, the Percentage Error can become quite large. VCE® caps this calculation to +/- 
0.95. This means that the error in the 2017 Forecast for Hour 06 cannot be greater or less than +/- 
95% of the Power Dataset in 2017. 

a. This will also artificially lower the errors in 2017 as it is possible to have higher differences. 
However, this also limits periods where the Percentage Error can become quite large and 
also create some unrealistic differences. 

2. For quality control: 
a. If the created Forecast Hour 06 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 06 < 0% (meaning 0% capacity factor), it is set to 0%. 

 
After the above steps, the resulting 2017 Forecast for Hour still has a very high bias. It creates power values 
that are not physically possible. To further create realistic values, VCE® applies the following: 

1. A daily max time series is created from the Power Dataset of 2017. A fitted curve (spline) is then 
applied to this max time series. If, at any point throughout the year, the created spline is less than 
the max time series, the spline is snapped up the max time series. This is performed because if the 
spline was lower than the max time series, it would have artificially suppressed the values that could 
actually be observed. 

2. If the calculated 2017 Forecast for Hour 06 is greater than 5% of the spline values, the spline values 
are used. This helped keep both some shape provided from 2018, but also allows application of the 
characteristics of the 2017 Power Dataset. 

 



©Vibrant Clean Energy, LLC                                                                                                   Boulder, Colorado 
info@vibrantcleanenergy.com April 2020 VibrantCleanEnergy.com 

- 59 - 

In 2018, VCE® updated how regression was applied with the ground-based observations to remove bias 
errors caused by inaccurate representation of the clouds in the model for the Solar Forecasts. In 2018, VCE® 
took a more realistic approach to this. In general, a forecast may not have all of the information and data 
used to create the regression coefficients in real-time. The forecast would have regression coefficients from 
a previous year available. The most similar year we had to 2018 for Solar was 2016 in terms of how 
observation data was used to improve the Solar Forecast and model cloud biases. VCE® applied the 
regression coefficients from 2016 to the Solar Forecast data in 2018. This created a slight bump up in error 
as seen further below in the metrics. However, this does create a more realistic dataset as to what would 
actually be available in real-time for energy balancing/trading. Since the 2017 Hour 06 Solar Forecasts were 
created from 2018 Percentage Errors, this new regression application will also be apparent in the behavior 
of the Solar Forecasts for 2017. 
 
Lastly, a Bi-Facial Solar series is available in 2017. This was not the case for 2014-2016. 
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8.3. Forecast Hour 02 (2017) 
 
VCE® updated how Forecast Hour 02 was created starting in the 2017 year. The Power Dataset is weighted 
heavily on Forecast Hour 02. From 2017 forward, missing data is far reduced in the VCE® HRRR data archives. 
A Forecast Hour 02 Forecast and the corresponding Power Dataset would be virtually the same. A new 
Forecast Hour 02 is now created as an interpolation between the Power Dataset and the Forecast Hour 06. 
For all intents and purposes, the new Forecast Hour 02 is likened to an “Hour 03” series.  
 
Wind:  
 
After we interpolate between the Power Dataset and the Forecast Hour 06, the following is applied: 

1. We introduce some small turbulence here to the newly created Forecast. When the Power 
Calculations are zero, we do not add any in any turbulence. This creates events that are not realistic 
for an Hour 02 Forecast. This was performed based on the following. 

a. The previous historical performance in Wind between Hour 02 and Hour 06 and the Power 
Dataset was analyzed for 2014-2016. On average, the Root Mean Square Error (RMSE) was 
roughly around double for Hour 06 when compared to Hour 02. Turbulence was added to 
match standard deviation of errors observed in previous years with the following: 

 
𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  �(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 02 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)2 − (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 02 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)2    

 
b. The Current Standard Deviation in Hour 02 Error is what came straight from the 

interpolated Hour 02 Forecast.  
c. The Goal Standard Deviation in Hour 02 Error is what is needed to get to a Standard 

Deviation in Error for Hour 02 that would be about half of the Standard Deviation in Error 
for Hour 06.  

d. In general, we added at random about 0-4% in capacity throughout the year. We allowed 
slightly less magnitudes to be added in 2017 as opposed to 2018. This was due to the fact 
that errors were already artificially suppressed from the Forecast creation process described 
above for 2017. 

2. For quality control: 
a. If the created Forecast Hour 02 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 02 < 0% (meaning 0% capacity factor), it is set to 0%. 

 
Solar:  
 
This is much more simple and straight-forward than what we do for wind. After we interpolate between the 
Power Dataset and the Forecast Hour 06, the following is applied: 

1. For quality control: 
a. If the created Forecast Hour 02 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 02 < 0% (meaning 0% capacity factor), it is set to 0%. 

 

8.4. Forecast Hour 06 (2018) 
 
VCE® performed several updates this year to both the Wind and Solar Forecasts.  
 
Wind:  



©Vibrant Clean Energy, LLC                                                                                                   Boulder, Colorado 
info@vibrantcleanenergy.com April 2020 VibrantCleanEnergy.com 

- 61 - 

 
Several improvements have been added to both the Power Datasets and the Forecasts regarding the Wind 
Resource. These methods were described in detail under the Power Datasets section of this report. At a 
high-level these were the following improvements: 
 

1. Introduction of the effects of turbulence  
2. Capturing turbine response to air density changes 

 
Solar:  
 
Several items were also updated on the Solar side for 2018. A new series, a Bi-Facial Solar Panel power 
series, is provided in the restructured data both for the Forecasts and the Power Calculations. 
 
VCE® also updated how regression was applied with the ground-based observations to remove bias errors 
caused by inaccurate representation of the clouds in the model for the Solar Forecasts. In 2018, VCE® took 
a more realistic approach to this. In general, a forecast may not have all of the observation data/information 
used to create the regression coefficients in real-time. The forecast would have regression coefficients 
(known biases and observations differences) available from a previous year. The most similar year we had 
to 2018 for Solar was 2016 in terms of how observation data was used to improve the Solar Forecast and 
model cloud biases. VCE® applied the regression coefficients from 2016 to the Solar Forecast data in 2018. 
This created a slight bump up in error as seen below. However, this does create a more realistic dataset as 
to what would actually be available in real-time for energy balancing/trading. Since the 2017 Hour 06 Solar 
Forecasts were created from 2018 Percentage Errors, this new regression application will also be apparent 
in the behavior and the Solar Forecasts for 2017. 
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8.5. Forecast Hour 02 (2018) 
 
VCE® updated how Forecast Hour 02 was created starting in the 2017 year. The Power Dataset is weighted 
heavily on Forecast Hour 02. From 2017 forward, missing data is far reduced in the VCE® HRRR data archives. 
A Forecast Hour 02 Forecast and the corresponding Power Dataset would be virtually the same. A new 
Forecast Hour 02 is now created as an interpolation between the Power Dataset and the Forecast Hour 06. 
For all intents and purposes, the new Forecast Hour 02 is likened to an “Hour 03” series.  
 
Wind:  
 
After we interpolate between the Power Dataset and the Forecast Hour 06, the following is applied: 

1. We introduce some small turbulence here to the newly created Forecast. When the Power 
Calculations are zero, we do not add any in any turbulence. This creates events that are not realistic 
for an Hour 02 Forecast. This was performed based on the following. 

a. The previous historical performance in Wind between Hour 02 and Hour 06 and the Power 
Dataset was analyzed. On average, the Root Mean Square Error (RMSE) was roughly around 
double for Hour 06 when compared to Hour 02. Turbulence was added to match standard 
deviation of errors observed in previous years with the following: 

 
𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  �(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 02 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)2 − (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 02 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)2    

 
b. The Current Standard Deviation in Hour 02 Error is what came straight from the 

interpolated Hour 02 Forecast.  
c. The Goal Standard Deviation in Hour 02 Error is what is needed to get to a Standard 

Deviation in Error for Hour 02 that would be about half of the Standard Deviation in Error 
for Hour 06.  

d. In general, we added at random about 0-6% in capacity throughout the year. We allowed 
slightly less magnitudes to be added in 2017 as opposed to 2018. This was due to the fact 
that errors were already artificially suppressed from the Forecast creation process described 
above for 2017. 

2. For quality control: 
a. If the created Forecast Hour 02 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 02 < 0% (meaning 0% capacity factor), it is set to 0%. 

 
Solar:  
 
This is much more simple and straight-forward than what we do for Wind. After we interpolate between the 
Power Dataset and the Forecast Hour 06, the following is applied: 

1. For quality control: 
a. If the created Forecast Hour 02 > 100% (meaning 100% capacity factor), it is set to 100%. 
b.  If the created Forecast Hour 02 < 0% (meaning 0% capacity factor), it is set to 0%. 

8.6. General Year-on-Year Wind and Solar Resource Trends 
 
Figure 38 shows the general daily trends of the power datasets and the two forecast hours available for 
comparison for 2014 – 2018 for both wind and solar. Wind was pulled from a 100-meter hub height. Solar 
is a single-axis tracking panel. 
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Figure 38: The average capacity (%) for Wind by hour across all of MISO (left) for 2014 to 2018 from top to bottom. The average 

capacity (%) for Solar by hour across all of MISO (right) for 2014 to 2018 from top to bottom.  This is shown for the Power Dataset, 
Forecast Hour 02 and Forecast Hour 06.  

Figure 38 shows the average shape of the wind and solar profiles throughout the day averaged across all 
the 3km grid points in the entire MISO region for five years. It is straight-forward to see the anti-correlated 
nature of the Wind and Solar resources across MISO. 
 
Analyzing the Wind data set, several items jump out. The Wind power dataset peaks in the nighttime hours. 
The wind forecasts follow this shape as well, albeit, a high bias is apparent when compared to the Power 
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Dataset. The one exception is 2017 where the magnitude bias is lower the latter half of the day. This again 
reveals the behavior from the 2017 forecasts being created from the 2018 Forecast errors. Across the board 
for 2017, the magnitude bias is lower than 2018. Since the magnitude bias for 2018 was small on from 1300-
2300 EST, the 2017 forecasts exhibit a slight negative bias there. It is observed that 2015, 2016 and 2017 
were lower wind years. In 2014 and 2018, the nighttime peaks with capacity factors over 40%. The daytime 
average lull also does not dip as low.  
 
Looking at the Solar dataset, the average maximum solar resource occurs for all years around 1300 EST. 
2016 was a good year for solar production. In general, aside from 2014, the Solar resource peak does not 
change as much year-on-year like the Wind does.  
 
Forecast Metrics, Evaluation and Analysis: 
 
The forecasts VCE® created were also compared to the Power Dataset product using the following standard 
metrics. In this case, “F” represents either the Forecast Hour 02 series or the Forecast Hour 06 series. The 
“PD” term represents the Power Dataset. This was done for both Wind and Solar forecasts to show the 
performance of the forecasts against the Power Dataset. 
 
Mean Absolute Error (MAE) – Shows the average magnitude of errors. A value closer to zero is better. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
� |𝐹𝐹𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

   ∗     100% 

 
Root Mean Square Error (RMSE) – Similar to MAE and shows the average magnitude of errors. However, it 
is affected more by outliers. A value closer to zero is better. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝐹𝐹𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

   ∗     100% 

 
Magnitude (Multiplicative) Bias – Compares the average forecast magnitude to the average Power Dataset 
Magnitude. Here, if the value is greater than “1”, the Forecast is generally higher than the Power Dataset. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  
1
𝑁𝑁∑ 𝐹𝐹𝑖𝑖𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁∑ 𝑃𝑃𝐷𝐷𝑖𝑖𝑁𝑁

𝑖𝑖=1

   

 
Coefficient of Variation – This is a measure of relative variability. This is the standard deviation of a series 
divided by the mean of the same series.  

𝐶𝐶𝐶𝐶 =  
𝜎𝜎
𝜇𝜇

   ∗     100% 

 
 
For the metric analysis shown below, the Wind and Solar capacity factors for each 3-km site within MISO 
were averaged together for all hours of each year provided to MISO (2014 - 2018). This is about 160,000 
sites within the MISO footprint that were included. All five years were also further concatenated together 
to form the “All” series. This is to show a benchmark, where possible, on how individual years perform 
against everything altogether. This was done for both Forecast Hours and the Power Dataset for 
comparison. The following graphics are based off of these averages. 
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Figure 39: MAE, RMSE and Magnitude Bias for Forecast Hour 02 and Forecast Hour 06 for a) Wind and b) Solar for all of MISO. All 

five years are shown individually (2014 - 2018). The same metrics were applied to all five years concatenated together (“All”). 

Figure 39 shows several interesting items to point out. First, the error metric values for MAE and RMSE are 
quite low in general. Part of this can be attributed to the fact that these metrics are averages of all the 3km 
sites in MISO. Individual sites could show higher errors. The other piece to consider here is that both the 
Power Dataset and the Forecasts are based on the same HRRR model data as a foundation. Comparing to 
actual farm measured data will reveal a different error profile. The metrics for Forecast Hour 02 are generally 
better than Forecast Hour 06 as is expected.  
 
Wind performance in MAE and RMSE generally improves marching forward in time from 2014-2018. Both 
error metrics dip down in 2017. This is due to the way the 2017 Forecasts Hours were created. The 
magnitude bias also improves in 2017, but that is an artificial artifact of the way the Forecasts were created. 
Across the board, the Forecasts do exhibit a high bias when compared to the Power Dataset. In all metrics 
here, Forecast Hour 02 outperforms Forecast Hour 06. The distance in performance between the two hours 
stays fairly consistent across all years. 
 
For Solar, there were several changes made for the 2017 and 2018 forecasts that jump out in the metrics 
shown above. For this resource as well, the Forecasts 2017 were made based off of the 2018 Hour 06 
Forecast and Power Dataset differences. Similar to Wind, MAE and RMSE are lower in 2017 and other years 
due to the nature of how they were created. In 2016, there was a model update to the HRRR from NOAA 
that year as well. Starting 2016, the components of irradiance were output from the HRRR model. In general, 
the HRRR model has seen updates since 2016 to further help improve renewable energy applications. Errors 
are lower this year, pointing out the improvements made. For 2018, MAE and RMSE do increase. The main 
reason for this is the way we applied regression coefficient corrections for that year. For 2014 through 2016, 
we calculated regression coefficients from observation data (a mix of surface and satellite data) to help 
improve the irradiance values coming from the HRRR forecasts. The same regression coefficients used for 
the Power Datasets, were used for the Forecasts those years. This is not entirely realistic for real-time 
understanding as much of this data may not be available in real-time for a forecast to use. In 2018, we used 
the regression coefficients from 2016 (the most similar year for the observation datasets). This still helps 
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improve the irradiance coming from the model. It also more accurately portrays what a forecast could be in 
real-time. In 2017 and 2018, the Forecast Hour 02 was created differently. Fundamentally, it was created as 
an interpolation between Forecast Hour 06 and the Power Dataset for each year. This was also the case for 
wind, but this change is more noticeable in the error metrics for Solar. The performance between Hour 02 
and Hour 06 starts to diverge starting 2017. The magnitude bias from 2016 forward is less than 1.0. This 
means that the Forecasts are generally lower than the Power Datasets. Since 2016 exhibited a low forecast 
bias, this was also reflected in 2018, in part, due to the use of the regression coefficients from 2016. Since 
2017 was created using tendencies from 2018, it also shows the characteristics of 2018 in the magnitude 
bias metric. 
 

 
Figure 40: The CV for Forecast Hour 02 and Forecast Hour 06 for a) Wind and b) Solar for all of MISO. All five years are shown 

individually (2014 - 2018). The same metrics were applied to all five years together (“All”). 

The Coefficient of Variation (CV) is much higher for Solar than it is for Wind. For Solar, this metric is also 
greater than 100%. This means that the standard deviation for Solar capacity is generally higher than the 
mean. This is reversed for Wind, where the mean is generally larger than the standard deviation and the 
Coefficient of Variation is less than 100%. This speaks to the nature of Solar’s diurnal variation. It can also 
point to Wind being less variable with less steep ramps. Wind can stay at max capacity for several days at a 
time for instance. 
 
These same metrics were calculated within binned hours of the day to delve deeper into what was 
happening on average over any given day within MISO. The “All” series is not incorporated here since there 
are so many years to consider. 
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Figure 41: The MAE, RMSE and Magnitude Bias for Wind are shown for a) Forecast Hour 02 and b) Forecast Hour 06. This was 

calculated for each hour of the day for all of MISO. The years 2014 - 2018 are shown individually. 

Looking at Wind, it is clear to see that Forecast Hour 06 errors remain higher than Forecast Hour 02 errors 
for the entire day both for MAE and RMSE. It is also shown that higher Wind forecast errors tend to occur 
during the night for Forecast Hour 06. This signature is not observed for Forecast Hour 02. The 2017 series 
show very low errors and performs the best in all hours for Forecast Hour 06. The reasoning for this was 
described previously. Year 2018 also shows improvements in error across almost all hours for MAE and 
RMSE. For Forecast Hour 02, the metrics for 2017 and 2018 are the best performers across the board. This 
speaks to the new way of creating and interpolating the Forecast Hour 02 those two years as well as the 
improvements to the forecast in 2018. RMSE especially is lower. Given the fact that Hour 02 is an 
interpolation between Hour 06 and the Power Dataset, large errors will inherently be capped. This will show 
up strongly in the RMSE signature as we see here. 
 

 
Figure 42: The MAE, RMSE and Magnitude Bias for Solar are shown for a) Forecast Hour 02 and b) Forecast Hour 06. This was 

calculated for each hour of the day for all of MISO. The years 2014 - 2018 are shown individually.  
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Looking at Solar Hour 06 Forecast, the errors in 2017 are generally less than the other years. 2017 has lower 
errors due to the nature of how those Forecasts were created. In 2018, higher forecast errors are apparent 
around sunrise and sunset. During the day, the 2018 Forecast does much better than other forecasts except 
for 2016 which is still the best performer. Errors are slightly higher in 2018 due to the fact that we updated 
how regression coefficients are applied to correct the cloud representation from the HRRR model.  
 
For Solar Hour 02 Forecast, both 2017 and 2018 have very low forecast errors. The new interpolation method 
to create Hour 02 here really shows as errors are quite reduced in those years. Innately, Forecast errors are 
higher for Solar during the day. 
 
To show the temporal effect on variability on this analysis, metrics were also calculated over 1-hour, 2-hour, 
6-hour, 12-hour and 24-hour average periods. This innately smooths out errors with time. The goal is to 
show how much variability can change when metrics are produced over different averaging periods. Below 
is a graphic that shows the effects of this for all of the 3km sites within MISO. 
 
From Figure 43, several items jump out. Once again, the MAE values for Forecast Hour 02 and Forecast Hour 
06 for Solar are rather similar. This changes in 2017 and 2018 where we created Forecast Hour 02 differently. 
This is not the case for Wind. For Wind, Hour 02 and Hour 06 Forecasts differences are similar year-to-year. 
For both Wind and Solar, when temporal averages are increased the MAE for both Forecast Hour 02 and 
Forecast Hour 06 decreases for all years. This concept is quite obvious to realize. It is beneficial to see how 
much the MAE drops off with increasing time averages.  
 
The Solar resource sees a sharper dropping Coefficient of Variance when more hours are averaged together 
for metrics. This in part is due to the inclusion of nighttime hours where there is no change in Solar Resource. 
It also is attributable to the entire diurnal pattern of Solar becoming more and more included. Ultimately, 
the standard deviation falls and the average of the series increases for Solar as more hours enter the 
average. For Wind, the CV does not change as drastically when more hours are averaged together. For Wind, 
the mean overpowers the standard deviation. Wind CV decreases with increasing time length because the 
standard deviation falls while the mean stays relatively constant. 
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Figure 43: Mean Absolute Error display for hourly data (1H), data averaged over two hours (2H), data averaged over six hours (6H), 
data averaged over twelve hours (12H) and data averaged over twenty-four hours (24 H). This is shown for a) Wind and b) Solar for 

all of MISO. Years 2014 - 2018 are provided. 
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Figure 44: Coefficient of Variance display for hourly data (1H), data averaged over two hours (2H), data averaged over six hours (6H), 
data averaged over twelve hours (12H) and data averaged over twenty-four hours (24 H). This is show for a) Wind and b) Solar for all 

of MISO. Years 2014 - 2018 are provided. 
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8.7. VRE Ramp Analysis 
 
VCE® also looked closer at the change in the Power Dataset and Forecasts every hour compared to the 
previous hour. This look at ramps can help pull out when the variables are changing the fastest on average 
across MISO. 

 
Figure 45: A look at the 1-hour change in resource capacity for a) Wind in 2014, b) Wind in 2016, c) Solar in 2014 and d) Solar in 

2016 across all of MISO. These patterns hold for other years as well (2015, 2017 and 2018). Here a higher capacity factor Wind year 
(2014) and a lower capacity Wind year (2016) are shown. A higher capacity factor Solar year (2016) and a lower capacity Solar year 

(2014) are shown. 

Interestingly on the 1-hour scale, the Solar ramp that can occur is far larger than that of Wind on average 
across all of MISO. This speaks to the nature of Wind where, during the same hour, one location could be 
experiencing a ramp up, while another a ramp down. Solar is more aligned with its daily sunrise/sunset 
ramps. Ramp sizes for Wind between 2014 and 2016 are similar. The same is true for Solar as well. Figure 
45 shows that the ramp rates did not change much between the two years. This is said in context of Capacity 
Factor percentages. If more of a generator resource was added (additional wind farms for instance), the 
ramps would innately increase when looking at the MWs produced from a resource. The steepest ramps 
occur for Wind around 0900 EST for a ramp down and 2100 EST for a ramp up in wind capacity. For Solar, 
the morning ramp up is steepest around 0900 EST, while the evening ramp down is largest around 1800-
1900 EST. Figure 45 also shows the general anti-correlated tendencies of Wind and Solar. When Wind is 
ramping down, on average Solar is ramping up and vice versa.  
 
The frequency of strong ramps at different time scales is another way to determine the characteristics of 
the series analyzed. VCE® created histograms of the ramp sizes over several time scales. As an example, for 
a Power Dataset value at 01/01/2014 at Hour 15, a 1-hour ramp is the difference in potential generation 
subtracting Hour 14 from Hour 15. For the same time (01/01/2014 at Hour 15), a 6-hour ramp is the 
difference in potential generation subtracting Hour 09 from Hour 15. Essentially, this is a “forward-looking” 
ramp. 
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Figure 46: The ramp size (% of capacity) frequency distribution for a) 1-hour ramp length for Wind, b) 6-hour ramp length for Wind, 
c) 12-hour ramp length for Wind, d) 1-hour ramp length for Solar, e) 6-hour ramp length for Solar and f) 12-hour ramp length for 

Solar. The Forecast Hour 02 series is compared to the Power Dataset. This is for the year 2016. 

 
Figures 46 and 47 reveal the difference in ramping properties of the Wind and Solar variables. Wind ramps 
are far less steep even at increased time lengths across all of MISO. Innately, this simply speaks to the diurnal 
pattern of solar with sunrise and sunset. Further it also outlines the challenges of supporting such steeps 
ramps at such short periods that come from solar. The Forecasts follow the distribution shape of the Power 
Dataset for Wind very well.  
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Figure 47: The ramp size (% of capacity) frequency distribution for a) 1-hour ramp length for Wind, b) 6-hour ramp length for Wind, 
c) 12-hour ramp length for Wind, d) 1-hour ramp length for Solar, e) 6-hour ramp length for Solar and f) 12-hour ramp length for 

Solar. The Forecast Hour 06 series is compared to the Power Dataset. This is for the year 2016. 
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8.8. Spatial Forecast Biases 
 
VCE® also considered the spatial forecast errors. Figure 48, below, shows the percentage difference for all 
3-km sites across the CONUS between Wind Forecast Hour 06 and the Power Dataset for 2014. If the 
difference is positive, the forecast is, on average, higher than the Power Dataset. It is observed that the 
forecast is high biased over the eastern half of the US, and also the majority of the MISO region for 2014. 
The other four years exhibit similar behavior.  
 

 
Figure 48: The percentage difference between the Wind Forecast Hour 06 and the Power Dataset for 2014 across the CONUS. 

It should be noted that these forecast errors shown for both wind and solar in these sections will be different 
when comparing to observations. The Power Datasets are created with HRRR model data, thus, everything 
is based in model space.  
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9. Generator Input Dataset 
 
VCE® processed the Energy Information Administration (EIA) annual data from 2017 to create the baseline 
input generator dataset for the United States. The Midcontinent ISO has a large geographic extent and 
contains approximately 195,000 MW of generation capacity. WIS:dom® has the ability to solve over such 
scales at 5-minute resolution for several years chronologically.  
 
The generator input datasets are based off of the publicly available EIA 860 and EIA 923 data. The 2017 data 
is what was available for the present study. We go through several steps to align and aggregate technology 
types to the 3-km grid space to match with the HRRR weather datasets. In the process, we also analyze 
year-on-year changes. General trends show coal capacities falling with Natural Gas Combined Cycle 
growing. Wind, Solar and Storage plants are on the rise as well. This continues even into the newly released 
EIA 860 2018 data. 
 
The following outlines the process VCE® undergoes to prepare the generator input datasets: 

1. Data is merged between the EIA 860 and EIA 923 data. 
2. Initial quality control is applied to the data. 
3. Align the location of the generators to the nearest 3-km HRRR cell. This can be more difficult for 

generators on state boundaries as well as land/water boundaries. As such, extra time is given to 
ensure that the mapped generators are correct. 

4. Aggregation of the generator types in each 3-km grid cell. As an example, if two separate coal 
plants are in the same grid cell, the capacity is summed for coal in that grid cell. 

5. Spatial checks are performed to make sure the output aligns with the original data. 
6. Final model input format produced. A county-level average of all generator types is also created. 

 
VCE® is now also working with the Catalyst Cooperative (https://catalyst.coop/), a company with the goal 
to help the energy research community by processing major publicly available sources into a format that is 
organized and stream-lined to use. This is helping our processes become quicker and eventually more 
frequent on this input dataset.  

 
Figure 49: The VCE® generator technology classes. 

 

https://catalyst.coop/
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Figure 50: WIS:dom® estimated capacity share for the MISO. The total capacity modeled is 195,035 MW. This is based upon EIA 860 

numbers from 2017. 

 

 
Figure 51: WIS:dom® estimated capacity share for the United States. The total capacity modeled is 1,180,956 MW. This is based upon 

EIA 860 numbers from 2017. 
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Figure 52: WIS:dom® estimated capacity share for the states within MISO. This is based upon EIA 860 numbers from 2017. This is 

only showing the generators under MISO in each state. 

 
Figure 53 displays the geographic siting of all MISO generators. It shows a large count of hydro plants in 
the northern states of MISO (Wisconsin, Minnesota and Michigan). Most wind farms are present in Iowa 
and southwestern Minnesota. There are many wind farms taking advantage of the lake effect meteorology 
in Wisconsin and Michigan. North Dakota also hosts some larger wind farms. Most utility PV units are 
observed in Minnesota and Indiana.  
 

 
Figure 53: WIS:dom® estimated location of various technologies within MISO. This is based upon EIA 860 numbers from 2017. 

10. Potential Input Dataset 
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VCE® undergoes a procedure to determine the siting potential of new generators as well. This ensures the 
WIS:dom® model has limitations on where it can build new generation. First and foremost, USGS land use 
information is utilized as a foundation within each 3- km grid cell to determine what uses the land currently 
has (see Figure 54 below). 
 

 
Figure 54: WIS:dom land use information providing properties of the land  within each 3km HRRR grid cell. 

The procedure to further quality control this information is as follows: 

1. Remove all sites that are not on appropriate land-use categories. 
2. Remove all sites that have protected species. 
3. Remove all protected lands; such as national parks, forests, etc.  
4. Compute the slope, direction and soil type and determine its applicability to VRE installations.  
5. Determine the land cost multipliers based on ownership type. 
6. Remove military and other government regions that are prohibited.  
7. Avoid radar zones and shipping lanes.  
8. Avoid migration pathways of birds and other species.  
 

The above, along with the knowledge of what is already built within a HRRR cell from the Generator Input 
data provides WIS:dom® with the view of where it can actually build certain generators as well as certain 
technologies. 
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