The role of transmission in deep decarbonization

Dr Christopher T M Clack *Vibrant Clean Energy, LLC*

Colorado Public Utilities Commission Webinar Virtual Meeting March 29th, 2021

Disclaimer:

@VibrantCE

ODrChrisClack

This presentation has been prepared in good faith on the basis of information available at the date of publication. The analysis was produced by Vibrant Clean Energy, LLC. No guarantee or warranty of the analysis is applicable. Vibrant Clean Energy, LLC will not be held liable for any loss, damage, or cost incurred by using or relying on the information in this presentation.

Vibrant Clean Energy

Purpose of Vibrant Clean Energy, LLC:

- Reduce the cost of electricity and help evolve economies to near zero emissions;
- Co-optimize transmission, generation, storage, and distributed resources;
- Increase the understanding of how Variable Generation impacts and alters the electricity grid and model it more accurately;
- Agnostically determine the least-cost portfolio of generation that will remove emissions from the economy;
- Determine the optimal mix of VG and other resources for efficient energy sectors;
- · Help direct the transition of heating and transportation to electrification;
- License <u>WIS:dom[®]</u> optimization model & <u>data</u> and/or perform <u>studies</u> using the model;
- Ensure profits for energy companies with a modernized grid;
- Assist clients unlock and understand the potential of high VRE scenarios, as well as zero emission pathways.

The Western United States Electric Grid (2020)

Available Clean Generation Are Tied To Electricity

Low-marginal Cost Electricity Production Resources (kWh)

- Wind
- Solar
- Geothermal
 - Nuclear
- Hydroelectric

Flexibility Resources (kWh \rightarrow kW \rightarrow kWh)

Transmission

- Hybrid Resources (wind+solar+storage)
 - Storage (electricity+heat)
 - Electrification
 - Direct Air Capture
 - Demand-side management
- Dispatchable Generation (SMR, EGS, H₂ CC, NGCC+CCS)
 - Synthetic Fuel/Chemical Production $(H_{2'}, CH_4, NH_3)$
 - Peaking Generation (H_2 CT)

Why is transmission important?

Transmission unlocks:

- Easier decarbonization of electricity grid;
- More efficient electrification of other sectors;
- Reduced electricity costs for all customers;
- Enhanced reliability of electricity for users;
- Reduction of curtailment of renewables;
- Increased storage and DER integration;
- Interstate markets for electricity.

Many studies have shown the benefits of long distance transmission

info@vibrantcleanenergy.com

ACEG El Study (2020)

VIBRANT CLEAN ENERGY

How does a transmission grid enable deep decarbonization?

Renewables are the cheapest source of electricity

Lowest cost wind is confined primarily to the central plains

Lowest cost solar is confined primarily to the west and south east

VIBRANT CLEAN ENERGY

Interannual variability of VREs can be harnessed

F

VIBRANT CLEAN ENERGY

Global Heat Transfer Drives Wind & Solar Constantly

Image Credit: Figure 7.5 in The Atmosphere, 8th edition, Lutgens and Tarbuck, 8th edition, 2001

This global heat engine runs **constantly** driving wind and cloud patterns.

> Processes *are well understood*.

Driven By Solar Irradiance & Earth-Sun Distance.

Therefore "variability" is a **local effect**.

Variability Of Wind & Solar Shrinks With Larger Areas

Wind & solar can back each other up using their nature

Variability Of Wind & Solar Shrinks With Larger Areas

Demands are concentrated & supply will be sparse

VIBRANT CLEAN ENERGY

National Demand For Electricity Will Necessarily Grow

NOTE: In 2019 **29.4 PWh** of primary energy was consumed in the US. Of that **9.6 PWh** was productive for end uses (energy services). Source: LLNL

https://www.nrel.gov/analysis/electrification-futures.html

Colorado Demand For Electricity Will Necessarily Grow

Demand Profiles & Stress Periods Will Change Over Time

* Before synthetic fuel production

How could a transmission grid be deferred or avoided? What are the alternatives?

An Example for Colorado (from ZBF results)

VIBRANT CLEAN ENERGY

An Example for Colorado (2025 alternatives)

Colorado example			Assume 500 miles
2025 (current trends)	Natural Gas	Storage	Transmission (HVDC)
Capital (\$/kW)	\$ 887.00	\$ 139.00	\$ 401.60
Capital (\$/kWh)	\$-	\$ 160.00	\$-
Fixed (\$/kW-yr)	\$ 11.40	\$ 8.10	\$ 0.53
Variable (\$/MWh)	\$ 4.50	\$ 26.30	\$ 25.00
Fuel (\$/MMBTU)	\$ 2.90	\$-	\$-
Capacity Factor (%)	1.130%	1.130%	19.349%
Size (MW)	3,000	3,000	3,000
WACC	5.87%	5.87%	5.87%
Term	30	10	40
LCOE (\$/MWh)	\$757.03	\$2,017.29	\$15.81

Natural gas is **50x** more expensive and storage is **126x** more expensive!

An Example for Colorado (must reach alternatives)

Colo	orado example		Assume 500 miles
Cost to match HVDC	Natural Gas	Storage	Transmission (HVDC)
Capital (\$/kW)	\$ 8.87	\$ 1.39	\$ 401.60
Capital (\$/kWh)	\$-	\$ 1.60	\$-
Fixed (\$/kW-yr)	\$ 0.11	\$ 0.08	\$ 0.53
Variable (\$/MWh)	\$ 0.05	\$ 0.26	\$ 25.00
Fuel (\$/MMBTU)	\$ 0.03	\$-	\$-
Capacity Factor (%)	1.130%	1.130%	19.349%
Size (MW)	3,000	3,000	3,000
WACC	5.87%	5.87%	5.87%
Term	30	10	40
LCOE (\$/MWh)	\$ 7.57	\$ 20.17	\$ 15.81

To get close to matching HVDC, natural gas and storage need to fall by **100x**!

Results from Zero By Fifty (ZBF)

Could a continental transmission grid help deep decarbonization?

VIBRANT CLEAN ENERGY

Resource Siting by 2035

VIBRANT CLEAN ENERGY

Resource Siting by 2050

VIBRANT CLEAN ENERGY

Installed Capacities

WIS:dom[®]-P Installed Capacities For The CONUS

Without HVDC

With HVDC

Generation Stack

Without HVDC

With HVDC

Not building an HVDC grid adds \$1 trillion in energy costs by 2050

The United States needs a lot of new transmission to meet its goals

VIBRANT CLEAN ENERGY

Colorado gains at the seams of an interconnect

Thank You

Dr Christopher T M Clack CEO Vibrant Clean Energy, LLC

Telephone: +1-720-668-6873 E-mail: christopher@vibrantcleanenergy.com Website: VibrantCleanEnergy.com Twitter: @DrChrisClack @VibrantCE