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1.1 Renewable Generation Dataset 
 
Weather is an integral component to modeling generation from variable renewable energy sources (such 
as wind and solar), the efficiency of conventional generators, the transmission ampacity and electric losses, 
and the electric demand profiles (specifically traditional demands, electric space heating, electric water 
heating and electric vehicle charging).  
 
The raw weather data is obtained from the National Oceanic and Atmospheric Administration (NOAA) High 
Resolution Rapid Refresh (HRRR) weather forecast model, which is a specially configured version of 
Advanced Research WRF (ARW) model. The HRRR is run every hour over a 3-km horizontal resolution that 
covers the continental United States as well as portions of Canada and Mexico. Since its inception, HRRR 
has undergone rapid and continuous improvement to its physical parameterization schemes, many of which 
have specifically targeted improved forecasts for the renewable energy sector. Through collaborative 
research efforts between the Department of Energy (DOE) and NOAA, projects such as the Solar Forecast 
Improvement Project [1], the Wind Forecast Improvement Projects I and II [2], [3] were conducted to 
improve forecasts of meteorological quantities important for wind and solar energy. 
 

  

https://vibrantcleanenergy.com/
https://www.noaa.gov/
https://rapidrefresh.noaa.gov/hrrr/
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.energy.gov/
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1.1.1 Wind power dataset method 
 
The amount of wind power captured by a wind turbine is proportional to the cube of the wind speed 
directed into the wind turbine, parallel to the rotor. As wind turbines have grown taller and the rotor swept 
area has increased, different portions of the wind turbine rotor are exposed to (significantly) different 
conditions of wind speed, temperature, air density and precipitation. Therefore, it is critical to capture these 
impacts of varying meteorological conditions with height on wind power production in modeling. VCE® 
incorporates these profiles of meteorological conditions using the rotor equivalent formulations [4], [5]. The 
VCE® wind power model is described in the present section. 
 
The VCE® wind power dataset is created using the HRRR weather forecast outputs. VCE® stores the HRRR 
outputs for forecast hours 0 (also known as initialization), 2, 6, and 12. The forecast hour 2 output has been 
found to be the most accurate, and thus is used for the wind power calculations1. The following variables 
are used to create the VCE® wind power dataset:  
 

• Horizontal components of wind (u, v) 
• Pressure (P) 
• Temperature (T) 
• Specific humidity (spH) 
• Geopotential height (GPT) 
• Cloud-water mixing ratio (cwr) 
• Rain-water mixing ratio (rwr) 
• Wind gust at lowest level (WG) 

 
The HRRR variables are output on three different vertical coordinates: Pressure coordinates, Terrain 
following sigma coordinates, a Hybrid vertical coordinates. The hybrid vertical coordinate mitigates the 
small-scale noise found near steep terrain, while having better vertical resolution than the pressure 
coordinates.  Figure 1.1 shows an example horizontal transect through complex terrain.  It can be seen that 
the vertical velocity fields are much more realistic in magnitude and less noisy in the hybrid coordinate. 
 

 
Figure 1.1: Reduction in noise in the hybrid coordinate (left) compared to the terrain following coordinate (right). 

 
The HRRR model outputs do not include density and needs to be calculated. Density is calculated using a 
modified formulation of the ideal gas law 
 

                                                 
1 During periods where forecast hour 2 is missing, the corresponding forecast hour 0 is used and for periods where forecast hour 0 is also missing, the 
corresponding forecast hour 6 is utilized. 
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𝜌𝜌 =
𝑃𝑃𝑜𝑜0.2854𝑃𝑃(1−0.2854)

𝑅𝑅𝑇𝑇𝑣𝑣
                                                                                     (1) 

 
where R is the specific gas constant (287.058 Jkg-1K-1 for dry air) and Tv is the virtual potential temperature, 
which is calculated using the formula 
 

𝑇𝑇𝑣𝑣 =
𝑇𝑇

�𝑃𝑃 𝑃𝑃𝑜𝑜� �
𝜅𝜅 �1 + 0.61𝑠𝑠𝑠𝑠𝑠𝑠 −  (𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐)�                                                               (2) 

 
Here Po is the standard pressure which is 105 Pa and 𝜅𝜅 is the Poisson constant given by 
 

𝜅𝜅 = 0.2854 ∗ (1 − 0.24 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠)                                                                           (3) 
 
The modified formulation is utilized to account for the buoyancy effects for the change in temperature and 
pressure with height above the ground. The buoyancy effect is captured by the virtual potential temperature 
calculated in Eq (2). The horizontal wind speed components (u,v), density, temperature and cloud-water 
mixing ratio are interpolated for heights 20 m above the ground to 300 m above the ground with 15 m 
vertical resolution. The HRRR wind gust outputs are used to compute a gust factor expressed as a fraction 
of the mean wind speed.   
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1.1.1.1 Rotor equivalent calculations 
 
Wind turbine power generation potential is derived as the kinetic energy flux through the wind turbine rotor 
layer. This general relationship is shown in Equation (4) 
 

𝑃𝑃𝑤𝑤 =
1
2
𝐶𝐶𝑝𝑝𝜌𝜌𝜌𝜌𝑈𝑈3                                                                                              (4) 

 
where Cp is the coefficient of power (ratio of actual power generated to available power in the wind), ρ is 
the air density, A is area of the wind turbine rotor and U is the horizontal wind velocity component along 
the horizontal axis of the wind turbine rotor. The vertical component of the velocity does not contribute 
appreciably to wind power production as modern wind turbines use aerodynamic lift for propulsion. In 
addition, any drag-component due to vertical velocity is assumed to cancel out over the rotor swept area. 
Equation (4) is valid as long as the density and velocity do not change within the rotor swept area of the 
wind turbine. However, modern wind turbine rotors can span vertical extents of 100 m or more and the 
variables that impact wind power production can change significantly within this vertical extent (Figure 1.2). 

 
Figure 1.2: Schematic showing how the wind profile can change within the rotor layer and how the wind turbine rotor is divided to 

calculate the rotor equivalent variables. 
 
The rotor equivalent formulation provides a more accurate estimate of wind power production by taking 
into account the vertical profile of the variables affecting wind power production. At its core, the rotor 
equivalent formulation allows calculation of the area weighted mean of the various meteorological variables 
across the wind turbine rotor. The rotor area is divided into sections with respect to height equal to the 
vertical resolution of the dataset (15m). Each of the variable values at a given height is area weighted by the 
portion of the wind turbine rotor it represents (equal to the vertical resolution) in order to estimate the 
equivalent effect of the vertical profile of that variable.  Equations (5) and (6) show how the speed and 
density in Equation (4) can be replaced by their rotor equivalent counterparts. 
 

𝑈𝑈𝑒𝑒𝑒𝑒 =
1
𝜌𝜌
�

𝑢𝑢𝑖𝑖𝑢𝑢𝐻𝐻 + 𝑣𝑣𝑖𝑖𝑣𝑣𝐻𝐻
𝑈𝑈𝐻𝐻

𝜌𝜌𝑖𝑖
𝑖𝑖

                                                                                      (5) 

https://vibrantcleanenergy.com/


©Vibrant Clean Energy, LLC  Boulder, Colorado 
info@vibrantcleanenergy.com 1st August, 2020 VibrantCleanEnergy.com 

- 7 - 

𝜌𝜌𝑒𝑒𝑒𝑒 =
1
𝜌𝜌
�𝜌𝜌𝑖𝑖𝜌𝜌𝑖𝑖
𝑖𝑖

                                                                                                       (6) 

 
In Equation (5), the effect of turbulence is neglected. The effect of turbulence can be included in the power 
calculations using Equation (7), as derived in [5]: 
 

𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒 =
1
𝜌𝜌
�

(𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑖𝑖′)(𝑢𝑢𝐻𝐻 + 𝑢𝑢𝐻𝐻′ ) + (𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑖𝑖′)(𝑣𝑣𝐻𝐻 + 𝑣𝑣𝐻𝐻′ )
[(𝑢𝑢𝐻𝐻 + 𝑢𝑢𝐻𝐻′ )2 + (𝑣𝑣𝐻𝐻 + 𝑣𝑣𝐻𝐻′ )2]1/2 𝜌𝜌𝑖𝑖

𝑖𝑖

                                                    (7) 

 
where (. )′ denotes tendency of that variable in a given time period (5-min in our case). Equation (7) shows 
that the effect of turbulence results in additional wind power being generated, which makes sense 
analytically as turbulence represents additional energy in the wind. However, actual wind turbine response 
to turbulence results in additional power generated at the lower end of the power curve (due to the 
additional energy). It also results in under-performance at the higher end of the power curve due to the 
positive velocity fluctuations being damped by the wind turbine control [6].  The effect of turbulence on 
power production due to wind turbine control can only be modelled through a full mechanical modeling of 
the wind turbine as is done by the National Renewable Energy Laboratory (NREL) FAST software. In our 
analysis, this effect of turbulence is neglected as it is found to be much smaller compared to the effect of 
wind speed and direction shear [5].   
 
The rotor equivalent formulation takes into account the change in density with respect to height as well as 
wind speed and direction shear on wind turbine power potential calculations. The rotor equivalent 
formulation is also applied to the temperature and moisture information as shown in Equations (8) and (9). 
The rotor equivalent temperature and moisture information is used to determine icing possibility within the 
wind turbine rotor. 
 

𝑇𝑇𝑒𝑒𝑒𝑒 =
1
𝜌𝜌
�𝑇𝑇𝑖𝑖𝜌𝜌𝑖𝑖
𝑖𝑖

                                                                                                         (8) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 =
1
𝜌𝜌
�𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝜌𝜌𝑖𝑖
𝑖𝑖

                                                                                                    (9) 

 
The rotor equivalent quantities are then linearly interpolated to 5-min intervals for each of the HRRR grid 
cells. The linear interpolation also covers any possible periods of data outages. These 5-min rotor equivalent 
quantities are used in the power calculations. In order to calculate actual power generation from the 
theoretical available power in the wind a Cp curve is used. A Cp curve is the ratio of the actual electrical 
power generated for a given wind speed to the theoretical available power in the wind given by Equation 
(10)  
 

𝐶𝐶𝑝𝑝 =
𝑃𝑃(𝑢𝑢)

𝑃𝑃𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤(𝑢𝑢).                                                                                                      (10) 

 
As the wind moves passed the wind turbine blades, it transfers momentum to the turbine blades and 
produce electricity. This transfer of momentum from energy extraction results in the control volume of the 
wind passing through the turbine to expand downstream of the rotor to preserve continuity.  Based on this, 
[7] calculated the theoretical maximum energy that can be extracted by a wind turbine. This theoretical 
maximum, called the Betz limit, is equal to 59.3% and is the maximum value a Cp can take. 
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The Cp curve varies for different types of wind turbines. The International Electrotechnical Commission (IEC) 
described four classes for wind turbines: Classes I, II, III and offshore. The shape of the Cp curve is defined 
not only by the physical limits on converting wind power to electricity, but also the control strategies 
employed by the wind turbine. For all onshore locations, the IEC-III curve is used and the offshore curve is 
used for all offshore locations. 
 
To accurately calculate wind power generation, the following two components are important and depend 
on how the Cp curve is used: 
 

• The impact of turbulence on power generation; 
• Wind turbine response to changes in air density. 
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1.1.1.2 Effect of turbulence 
 
As described earlier, turbulence has a complicated impact on the wind power generation. At wind speeds 
closer to the cut-in speed, the presence of turbulence increases power generated from the turbine, while at 
wind speeds closer to the rated power, turbulence reduces the power output from a wind turbine [6]. The 
reason for this behavior is that near cut-in speed, the positive fluctuations due to turbulence are allowed to 
generate excess power, while the negative fluctuations do not have any effect as the turbine is not 
generating any power in that case. Near the rated speed, the positive fluctuations due to turbulence get 
damped out by the wind turbine control, while the negative fluctuations reduce power output, and hence 
the net effect is a reduction in power output from the turbine. 
 
Modelling this effect analytically is difficult as seen from Equation (7), where presence of turbulence always 
results in increased power production. Therefore, instead of trying to model this effect analytically, it was 
decided to utilize the characteristics of the Cp curve to simulate the wind turbine control response. To do 
this, the HRRR model wind speed output needs to be perturbed in a manner that actual atmospheric 
turbulence would, as shown in Equation (11), known as the Reynold’s decomposition. 
 

𝑈𝑈(𝑡𝑡) = 𝑈𝑈�(𝑡𝑡) + 𝑢𝑢′(𝑡𝑡)                                                                                      (11) 
   
where, U(t) is the wind speed including effect of turbulence at given timestep, 𝑈𝑈�(𝑡𝑡) is the mean wind speed 
at a given timestep from the HRRR, and 𝑢𝑢′(𝑡𝑡) is the random turbulence perturbation at that timestep. 
 
The perturbations that need to be added to the HRRR model wind speed are estimated using the wind gust 
HRRR model output. The HRRR model estimate of wind gust represents a sudden, brief increase in peak 
wind speed (lasting less than 20 seconds) expected at a given timestep. An estimate of the standard 
deviation of turbulence from this peak value is needed. Assuming that the turbulence distribution is 
symmetric (skewness of zero), which is reasonable for horizontal velocity turbulence, and that it follows a 
standard normal distribution, the standard deviation can be estimated using Equation (12): 
 

𝜎𝜎𝑈𝑈 =
�𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑈𝑈𝑒𝑒𝑒𝑒�

4
                                                                              (12) 

 
where, 𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the model outputted wind gust at a given timestep, 𝑈𝑈𝑒𝑒𝑒𝑒 is rotor equivalent wind speed from 
Equation (5), and 𝜎𝜎𝑈𝑈 is the standard deviation of wind speed due to turbulence. 
 
The reasoning used in Equation (12) to calculate standard deviation is based on the following. Since the 
gust is the peak wind speed observed, it is assumed to be a value in the 99.9936th percentile which is four 
standard deviations from the mean. The standard deviation of wind speed due to turbulence calculated 
using Equation (12) is now used to calculate the random perturbation to the rotor equivalent wind speed 
at a given timestep using Equation (13): 
 

𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑈𝑈𝑒𝑒𝑒𝑒 + 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟(0,𝜎𝜎𝑈𝑈)                                                                 (13) 
 
where, 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒 is the rotor equivalent wind speed including the effect of turbulence. The rest of the calculations 
proceed as described earlier. 
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1.1.1.3 Wind turbine response to density fluctuations 
 
Modern wind turbines have control responses to maximize wind generation in presence of changing air 
densities. This control response is usually active close to the rated wind speed, but can also extend to region 
2 of the power curve. Figure 1.3 shows the turbine response in terms of the observed Cp values in response 
to changes in air density. 
 
As seen in Figure 1.3 the Cp value is a function of both wind speed and density (top panel) and the changes 
in Cp values compared with the Cp value at standard density are highly non-linear (bottom panel). However, 
the change in Cp with respect to density at a given wind speed is linear. The slope and intercept of this linear 
behavior changes at every wind speed. Therefore, a model was constructed to predict the slope and 
intercept of the change in Cp at a given wind speed. This model allows predict of a “correction” to the Cp at 
standard density and given wind speed, which will produce the correct Cp value at that wind speed and 
density. 
 
Figure 1.3 shows the comparison of the described model predicted Cp values against the actual 
manufacturer supplied Cp values. It is seen that the model is able to predict the changes to the Cp values at 
various densities and wind speeds accurately. The comparison of the Cp values at various densities to the 
Cp values at the standard density (1.225 kg/m3) show that there can be differences of up 50% of the Cp value 
at a given wind speed. Hence it is very important to quantify the impact of density on the Cp values. 
 

 
Figure 1.3: Impact of density on Cp values for a 2.3 MW Siemens wind turbine. 

 

https://vibrantcleanenergy.com/
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Figure 1.4-A: Comparison of model predicted Cp (black dashed line) values to the actual turbine Cp values (red solid line).  The 

standard Cp value at density of 1.225 kg/m3 is shown in solid green line. 
 
Starting in 2019, VCE® has begun to pull higher model heights up to 360 meters. This is increased from 300 
meters previously and is used to provide rotor equivalent wind speed for hub heights up to 200 meters. 
Before 2019, hub heights are only available up to 160 meters. In addition, VCE® now incorporates the NREL 
15 MW reference turbine for offshore sites greater than a 140-meter hub height. Offshore technology has 
experienced vast improvements over the recent years. Integrating this improved capability into WIS:dom® 
allows for the development potential of offshore in the model to match these technology advancements. 
Figure 1.4-B shows the new offshore power curve is more aggressive and produces more power from a 
lower wind speed across all wind speed bins plotted. 
 

 
Figure 1.4-B: Comparison of the previous VCE offshore power to the new NREL 15MW reference power curve now used when 

deriving the wind generation dataset. This is utilized for offshore sites where hubs heights are greater than 140-meters. 
 

The WIS:dom® model takes into account time periods where generation may not be possible due to extreme 
weather conditions. Normal operational temperatures for wind turbines are set to be between -25oC and 
45oC. In addition, the potential for icing is also calculated. Icing is considered possible when temperatures 
are below -15oC and cloud-water mixing ratio is greater than zero. The periods with potential for icing or 

https://vibrantcleanenergy.com/
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temperatures outside of normal operating conditions are set to zero power output. It is important to identify 
periods such as the above where generation will be limited or zero as these are usually correlated with 
periods of high energy demand. WIS:dom® then has to ensure that the demand during these periods will 
be met in some other way. 
 
The above power calculations are performed for each 3-km HRRR grid cell (~1.9 million grid cells) for all 
the years required to run WIS:dom®. The WIS:dom® model is run on the same grid as the HRRR, however, 
only a subset of the HRRR cells are made available for wind plant development. The potential for wind 
development in MW for each HRRR cell is made available to WIS:dom®, which is used in determining 
whether wind generation gets built or not. The available wind capacity potential provided to WIS:dom® is 
shown in Figure 1.5(d). When choosing to build wind generation, WIS:dom® can choose the most optimal 
hub-height wind turbine to build. As seen from Figure 1.5 (a) and 1.5(c), higher hub-heights give higher 
wind power capacity factors. However, there are additional costs associated with building taller towers and 
wind turbines capable to withstanding higher wind loading. WIS:dom® takes these costs into account and 
determines the optimal hub-height at a given location. The optimal height is determined by evaluating 
whether the increased cost due to the higher tower height is offset by increased revenue or demand met 
from additional power generation at the higher hub-height. In this analysis it is assumed that the same 
turbine rotor is installed on taller towers. An important impact of this assumption is that as the hub-heights 
increases, the wind power capacity factors also increase due to the higher average wind speeds at increased 
heights above the ground. However, beyond a certain hub-height, wind power capacity factors start to 
decrease. This decrease in power capacity factors is due to increased wind speeds at higher hub-heights, 
the wind turbines are in the cut-off portion of the power curve more often. Therefore, to take full advantage 
of the increased wind resource at higher heights will require a redesign of the turbine rotor to operate in 
the higher wind speed regime. 
 

 
Figure 1.5: The wind power dataset. Mean wind power capacity factor at for 80-m hub-height using data from year 2014 (top left), 
optimal hub-height for the CONUS (top right), mean wind power capacity factor for 120 m hub-height using data from year 2014 

(bottom left), and wind plant siting constraints for the CONUS (bottom right). 
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1.1.2 Solar power dataset method 
 
Calculation of the solar PV power generation requires accurate forecasts of Global Horizontal Irradiance 
(GHI), Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI). These variables are then input 
into a PV cell power modeling algorithm. The components of the solar irradiances are related to each other 
by: 
 

GHI = DNI*cos(sza) + DHI                   (14) 
 
where sza is the solar zenith angle. 
 
Numerical weather prediction models did not output forecasts of DNI and DHI until 2016. In addition, 
forecasts of DNI and DHI produced by the HRRR after 2016 have significant biases mainly due to improper 
representation of clouds. To obtain forecasts of DHI and DNI from HRRR model outputs for years before 
2016 and correct for model biases for years after 2016, VCE® employs a linear multiple multivariate 
regression technique developed by [8]. The variables used to create the solar power data are the following: 
 

• From the HRRR 
 Downwelling shortwave (SW), 
 Downwelling longwave (LW), 
 10-m wind speed (Wind10m), 
 2-m temperature (T2m), 
 Direct normal irradiance (DNI) – 2016 onwards, 
 Diffuse horizontal irradiance (DHI) – 2016 onwards, 

• From GOES-east and GOES-west (for datasets before 2016 only) 
 Visible band, 
 4𝜇𝜇m band, 
 11𝜇𝜇m band, 
 13𝜇𝜇m band, 
 Water-vapor band, 

• Calculated 
 Direct normal irradiance at the top of the atmosphere (DNI0), 
 Solar zenith angle (sza), 
 Solar azimuth angle (azm), 
 Hour-angle (hrang), 
 Declination angle (dec). 

 
The satellite observations are not included starting in 2016, as these observations are already assimilated 
into the HRRR during data assimilation. To perform the regression, we get observations of GHI, DNI and 
DHI from fifteen ground-based radiation measurement sites (SURFRAD and SOLRAD) operated by the 
NOAA. The above variables are chosen as they are most likely to impact the amount of solar irradiance 
reaching the Earth’s surface and its attenuation along the way. A significant portion of the effort in creating 
the solar power dataset is spent on getting the data ready for regression. First, the required HRRR variables 
are extracted from the HRRR output files at 1-hour resolution. These HRRR variables are then linearly 
interpolated to 5-min intervals. For data gaps of longer than 1-hour, persistence is assumed and they are 
filled in with data from the same hour on the previously available day. Linear interpolation is carried out 
only sub-hourly. 
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Satellite measurements from GOES-east and GOES-west are used, which allows a stereoscopic observation 
of the cloud field. Each of the GOES satellite observations cover the full CONUS with observations available 
at 15-min time interval. The GOES satellites make measurements in 5-channels listed above. The 
measurements are in bit count, which are converted to temperature (in Kelvin) using the formula [8]: 
 

𝑇𝑇 =
1
2

(660 − 𝐵𝐵),    0 ≤ 𝐵𝐵 ≤ 176     𝑎𝑎𝑎𝑎𝑎𝑎 
𝑇𝑇 = 418 − 𝐵𝐵,   176 < 𝐵𝐵 ≤ 255                                                                            (15) 

 
The spatial resolution of the satellite data is 1-km for the visible channel and 4.km for the remaining 
channels. Since the HRRR has a spatial resolution of 3-km, the satellite data are spatially interpolated on to 
the HRRR grid. This spatially interpolated satellite data is then linearly interpolated in time to 5-min intervals 
to match the interpolated HRRR output. 
 
In addition to the variables obtained from the HRRR and satellite measurements, five additional variables 
are calculated. The calculation of solar irradiance at the top of the atmosphere needs to take into account 
the eccentricity of Earth’s orbit. The average DNI0 at the top of the atmosphere is 1360.8 W m-2 and is 
denoted by Io. The equation for the actual irradiance hitting the top of the atmosphere is given by 
 

𝐷𝐷𝐷𝐷𝐷𝐷0 = 𝐷𝐷𝑜𝑜 �
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

�
2

                                                                                     (16) 

 
where Ravg is the average Earth-Sun distance and R is the instantaneous Earth-Sun distance. The ratio of Ravg 
to R is given by the Fourier expansion in Equation (16) which is accurate to 0.0001 [9] 
 

�
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

�
2

≈ 1.000110 + 0.034221 cos(𝛿𝛿) + 0.00128 sin(𝛿𝛿) + 0.000719 cos(2𝛿𝛿) + 0.000077 sin(2𝛿𝛿)     (17) 

 
where, the day angle 𝛿𝛿 = 2𝜋𝜋𝑎𝑎

365.242�  radians and d is the day of the year. 
 
The declination angle is also given as a Fourier expansion in Equation (18) which accurate to 0.0006 radians 
[9] 
 
𝑎𝑎𝑑𝑑𝑑𝑑 = 0.006918 −  0.399912 cos(𝛿𝛿)  +  0.070257 sin(𝛿𝛿)  −  0.006758 cos(2𝛿𝛿)  +  0.000907 sin(2𝛿𝛿)                  

− 0.002697 cos(3𝛿𝛿) + 0.00148 sin(3𝛿𝛿)                                                                                              (18) 
 
The hour angle, given by equation (19) is defined as the number of degrees the Sun moves across the sky 
compared to local Solar noon. The hour angle is zero at local Solar noon, positive in the afternoon and 
negative in the morning 
 

ℎ𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟 = 15 ∗ (𝐿𝐿𝐿𝐿𝑇𝑇 − 12),                                                                                   (19) 
 
where LST is the local solar time given by 
 

𝐿𝐿𝐿𝐿𝑇𝑇 = 𝐿𝐿𝑇𝑇 +
𝑇𝑇𝑇𝑇
60

                                                                                              (20) 
 
where LT is the local time and TC is the time correction factor that accounts for the variation in the local 
Solar time due to the range of longitudes within the same time zone, eccentricity of the Earth’s orbit and 
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Earth’s axial tilt (to calculate the last two, the equation of time given by Equation (23) is used).  The time 
correction factor (TC) is calculated as 
 

𝑇𝑇𝑇𝑇 = 4 ∗ (𝑙𝑙𝑙𝑙𝑎𝑎 − 𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿) + 𝐸𝐸𝑙𝑙𝑇𝑇                                                                         (21) 
 
where, LSTM is the local standard time meridian is the reference meridian used for a particular time zone 
and is calculated using the equation 
 

𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 = 15 ∗ (𝐿𝐿𝑇𝑇 − 𝑈𝑈𝑇𝑇𝑇𝑇)                                                                            (22) 
 
and EoT is the equation of time, which is an empirically derived relationship that corrects for the eccentricity 
of the Earth’s orbit and the Earth’s axial tilt. The EoT, in radians, is given by a Fourier expansion that is 
accurate to 0.0025 radians or 35 seconds [9] 
 

𝐸𝐸𝑙𝑙𝑇𝑇 = 0.000075 + 0.001868 cos(𝛿𝛿) − 0.032077 sin(𝛿𝛿) − 0.014615 cos(2𝛿𝛿) − 0.040849 sin(2𝛿𝛿).      (23) 
 
 
Now the Solar zenith angle can be calculated using Equation (24) 
 

cos(𝑠𝑠𝑠𝑠𝑎𝑎) = sin(𝑙𝑙𝑎𝑎𝑙𝑙) sin(𝑎𝑎𝑑𝑑𝑑𝑑) + cos(𝑙𝑙𝑎𝑎𝑙𝑙) cos(𝑎𝑎𝑑𝑑𝑑𝑑) cos(ℎ𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟)                          (24) 
 
where, the latitude (lat), declination angle (dec) and hour angle (hrang) are in radians. 
 
Once all the quantities required for the regression are collected, the regression can be performed.  The 
regression is performed separately for the GHI and DNI for computational efficiency and DHI is calculated 
using Equation (14) once the GHI and DNI are known. The regression is represented mathematically as [8] 
 

𝑌𝑌𝑛𝑛×𝑝𝑝 = 𝑋𝑋𝑛𝑛×(𝑟𝑟+1)𝛽𝛽(𝑟𝑟+1)×𝑝𝑝 + 𝜀𝜀𝑛𝑛×𝑝𝑝                                                                     (25) 
 
where,  𝑌𝑌𝑛𝑛×𝑝𝑝 are the endogenous variables (here the ground-based measurements of GHI, DNI and DHI), 
𝑋𝑋𝑛𝑛×(𝑟𝑟+1) are the exogenous variables (here the variables from the NWP model, satellite measurements and 
calculated variables), 𝛽𝛽(𝑟𝑟+1)×𝑝𝑝 are the regression coefficients and 𝜀𝜀𝑛𝑛×𝑝𝑝 are the measurement errors in the 
ground-based observations. 
 

The ground-based observations of the irradiance components measured by the SURFRAD and SOLRAD 
sites are available at 1-min time resolution. These measurements are averaged to 5-min resolution, which 
reduces measurement noise and helps reduce the discrepancy between a point measurement from the 
SOLRAD/SURFRAD sites and the grid-cell average from the HRRR model. The errors in the 
SURFRAD/SOLRAD observations are modelled as 
 

𝜀𝜀 = 5 + 0.02 ∗ (1 − cos(𝑠𝑠𝑠𝑠𝑎𝑎)) + 0.01 ∗ 𝑇𝑇2𝑚𝑚 + 0.005 ∗ 𝐺𝐺𝐺𝐺𝐷𝐷.                                             (26) 
 
The SURFRAD/SOLRAD measurements are known to have error bars of ±5 W m-2 under ideal conditions. 
These errors get larger depending on various factors such as total irradiance, ambient temperature and 
solar zenith angle. The regression is performed using the advanced statistics package from IDL and analysis 
of variance (ANOVA) techniques are used to determine performance of the regression. The regression 
coefficients that give the best performance are applied to the HRRR data to get irradiance estimates over 
the whole contiguous United States. Once the irradiance components are calculated, the power production 
from a photovoltaic panel can be estimated. 
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1.1.2.1 Estimating power from solar photovoltaics 
 
A photovoltaic (PV) cell converts solar radiation incident on its surface to electrical power. A PV cells utilizes 
both the direct (DNI) and diffuse (DHI) radiation to produce current and a voltage, which determine the 
power generated by the cell as shown in Figure 1.6 and is defined by Equation (27): 
 

𝑃𝑃𝑠𝑠 = 𝑉𝑉 ∗ 𝐷𝐷.                                                                                                (27) 
 

 
Figure 1.6: Schematic showing the direct and diffuse irradiance on a PV panel with respect to its tilt and azimuth orientation. 

 
The power performance of a PV cell is a complex function of several environmental factors (such as ambient 
temperature, wind speed, incident irradiation) as well as the PV cell characteristics. These environmental 
factors interact non-linearly and make estimating the power output from a PV cell difficult. The power 
performance model used by VCE® is an empirically derived model developed by Sandia National Laboratory 
and described in [10]. To calculate the voltage and current induced in the PV cells, equations (11) to (20) 
from [10] are used. These equations attempt to model the non-linear response of a PV cell as an interaction 
of several factors each having well defined, experimentally derived relationships with the independent 
variables affecting PV cell performance. 
 
To calculate the power produced from a PV cells requires being able to model the shape of the I-V curve of 
the PV panel accurately. The I-V curve of a PV cell shifts depending on the amount of incident radiation on 
the panel and ambient temperature. In order to replicate these effects accurately King et al. [10] model the 
voltage and current response separately using 3,300 measurements made over a range of clear and cloudy 
conditions, wide range of solar irradiance and module temperatures. The measured voltage values are first 
translated to a common temperature of 50oC to remove effects of temperature. The translated 
measurements of voltage and associated irradiance are regressed using Equations (28) and (29) to find 
values of n, c2 and c3: 
 

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐷𝐷𝑠𝑠𝛿𝛿(𝑇𝑇𝑜𝑜). ln(𝐸𝐸𝑒𝑒) + 𝛽𝛽𝑉𝑉𝑜𝑜𝑜𝑜𝐸𝐸𝑒𝑒(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑜𝑜)                                                      (28) 
 

𝑉𝑉𝑚𝑚𝑝𝑝 =  𝑉𝑉𝑚𝑚𝑝𝑝0 − 𝑑𝑑2𝐷𝐷𝑠𝑠𝛿𝛿𝑇𝑇𝑜𝑜 ln(𝐸𝐸𝑒𝑒) − 𝑑𝑑3𝐷𝐷𝑠𝑠(𝛿𝛿𝑇𝑇𝑜𝑜 ln(𝐸𝐸𝑒𝑒))2 − 𝛽𝛽𝑎𝑎𝑚𝑚𝑝𝑝𝐸𝐸𝑒𝑒(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑜𝑜)                                (29) 
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where 𝑉𝑉𝑜𝑜𝑜𝑜 is the open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is the open-circuit voltage constant, 𝑉𝑉𝑚𝑚𝑝𝑝 is the voltage at maximum 
power, 𝑉𝑉𝑚𝑚𝑝𝑝0 is the constant for voltage in I-V curve, 𝛿𝛿(𝑇𝑇𝑜𝑜) = 𝑎𝑎 𝑘𝑘 (𝑇𝑇𝑜𝑜 + 273.15)/𝑞𝑞 is the thermal voltage per 
cell at temperature 𝑇𝑇𝑜𝑜 ,  𝑎𝑎, 𝑑𝑑2,  𝑑𝑑3 are constants for voltage formula, 𝑞𝑞 is the elementary charge (1.60218e-
19 coulomb), 𝑘𝑘 is the Boltzmann’s constant (1.38066e-23 J K-1), 𝐷𝐷𝑠𝑠 number of cells in series in a module’s 
cell-string, 𝑇𝑇𝑜𝑜 reference cell temperature, 𝑇𝑇𝑜𝑜 = 𝐺𝐺𝐺𝐺𝐷𝐷 ∗ 𝑑𝑑𝑎𝑎+𝑏𝑏∗𝑊𝑊𝑊𝑊 + 𝑇𝑇2𝑚𝑚 is the cell temperature inside the 
module, 𝑊𝑊𝐿𝐿 is the wind speed, 𝑇𝑇2𝑚𝑚 is the 2-m temperature, and 𝑎𝑎,  𝑏𝑏 are constants. 
 
In a similar way, to determine the dependence of module current on incident irradiation, the current values 
are translated to a common temperature and regression coefficients, Co, C1, C4, C5, C6, C7, are determined 
using Equations (30), (31) and (32): 
 

𝐷𝐷𝑚𝑚𝑝𝑝 = 𝐷𝐷𝑚𝑚𝑝𝑝𝑜𝑜{𝑇𝑇0𝐸𝐸𝑒𝑒 + 𝑇𝑇1𝐸𝐸𝑒𝑒2}�1 + 𝛼𝛼𝐼𝐼𝑚𝑚𝑝𝑝(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑜𝑜)�                                                             (30) 
 

𝐷𝐷𝑥𝑥 = 𝐷𝐷𝑥𝑥𝑜𝑜{𝑇𝑇4𝐸𝐸𝑒𝑒 + 𝑇𝑇5𝐸𝐸𝑒𝑒2}{1 + 𝛼𝛼𝐼𝐼𝑠𝑠𝑜𝑜(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑜𝑜)}                                                                 (31) 
 

𝐷𝐷𝑥𝑥𝑥𝑥 = 𝐷𝐷𝑥𝑥𝑥𝑥𝑜𝑜{𝑇𝑇6𝐸𝐸𝑒𝑒 + 𝑇𝑇7𝐸𝐸𝑒𝑒2}�1 + 𝛼𝛼𝐼𝐼𝑚𝑚𝑝𝑝(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑜𝑜)�                                                              (32) 
 
where, 𝐷𝐷𝑚𝑚𝑝𝑝  is the current at maximum power, 𝐷𝐷𝑚𝑚𝑝𝑝0 is the constant for current in I-V curve, 𝐷𝐷𝑥𝑥 is the current 
at module V = 0.5 𝑉𝑉𝑜𝑜𝑜𝑜, 𝐷𝐷𝑥𝑥𝑥𝑥 is the current at module V = 0.5 (𝑉𝑉𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑚𝑚𝑝𝑝), 𝐷𝐷𝑥𝑥0 is the constant for current in I-V 
curve, 𝐷𝐷𝑥𝑥𝑥𝑥0 is the constant for current in I-V curve, 𝛼𝛼𝐼𝐼𝑚𝑚𝑝𝑝 is the normalized temperature coefficient for 𝐷𝐷𝑚𝑚𝑝𝑝, 
and 𝛼𝛼𝐼𝐼𝑠𝑠𝑜𝑜  is the normalized temperature coefficient for 𝐷𝐷𝑠𝑠𝑜𝑜, the short-circuit current. 
 
In the above equations, Ee is the effective irradiance to which the PV cells in the module respond to and is 
given by 

𝐸𝐸𝑒𝑒 = 𝑓𝑓1 ∗ 𝐿𝐿𝑆𝑆 ∗ �
𝐸𝐸𝑏𝑏𝑓𝑓2 + 𝑓𝑓𝑑𝑑 ∗ 𝐷𝐷𝐺𝐺𝐷𝐷

𝐸𝐸𝑜𝑜
�                                                                          (33) 

 
where,   𝐸𝐸𝑏𝑏 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ cos(𝐴𝐴𝐴𝐴𝐷𝐷), which is the beam component of the solar irradiance incident on module 
surface, Eo is the reference solar irradiance (1000 W/m2), 𝑓𝑓1 is the relation between solar spectral variation 
and short circuit current given by 𝑓𝑓1 = 𝑎𝑎0 + 𝑎𝑎1𝐴𝐴𝐿𝐿𝑎𝑎 + 𝑎𝑎2𝐴𝐴𝐿𝐿𝑎𝑎

2 + 𝑎𝑎3𝐴𝐴𝐿𝐿𝑎𝑎
3 + 𝑎𝑎4𝐴𝐴𝐿𝐿𝑎𝑎

4, where 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 are 
constants and AMa is the absolute air-mass (dimensionless), 𝐿𝐿𝑆𝑆 is the soiling factor, 𝑓𝑓2 is the relation 
between optical influences and solar angle-of-incidence, 𝑓𝑓2 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷 + 𝑏𝑏2 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷2 + 𝑏𝑏3 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷3 + 𝑏𝑏4 ∗
𝐴𝐴𝐴𝐴𝐷𝐷4, where 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 are constants, 𝐴𝐴𝐴𝐴𝐷𝐷 = cos𝛽𝛽 cos𝜃𝜃𝑧𝑧 − sin𝛽𝛽 sin𝜃𝜃𝑧𝑧 cos𝛾𝛾 is the angle of incidence, 
where 𝛽𝛽 is tilt angle of the panel with respect to the ground,  𝜃𝜃𝑧𝑧 is solar zenith angle, 𝛾𝛾 is the azimuth angle 
with respect to the north-south, and 𝑓𝑓𝑑𝑑 is the relative response to diffuse versus beam irradiance. 
 
The empirical functions f1(AMa) and f2(AMa) quantify the effect of solar spectral variation and optical 
influences on short-circuit current. These functions are determined from laboratory testing and account for 
systematic effects that occur during clear sky periods. Absolute airmass provides a relative measure of the 
path length solar radiation has to travel at a given solar zenith angle compared to a solar position of directly 
overhead. 
 
The performance of a PV panel also depends on the module temperature as seen in Equations (28)-(32). 
The thermal response of a PV cell can be modelled as 
 

𝑇𝑇𝑜𝑜 = 𝐺𝐺𝐺𝐺𝐷𝐷 ∗ 𝑑𝑑𝑎𝑎+𝑏𝑏∗𝑊𝑊𝑊𝑊 + 𝑇𝑇2𝑚𝑚.                                                                                   (34) 
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The simple model for expected module temperature given by Equation (31) has been shown to have 
accuracy of ±5oC, which results in uncertainty in power output of less than 3%. 
 
The constants in the power generation model are obtained from [11] and the NREL System Advisory Model 
(SAM) [12]. It is assumed that the individual panels are placed far enough apart so as not to create any 
shadowing effects. The above formulae are used to calculate solar power production for the following 
technologies: 
 

• Fixed PV panel for various tilt angles (0o, 15o, 30o, 45o, latitude tilt), 
• One-axis tracking at latitude tilt, 
• Two-axis tracking. 

 
Finally, the calculated power output is de-rated based on expected losses from wiring and soiling (4.5% 
loss), AC/DC conversion (3.3% loss) and presence of snow on the panels (assume no production if snow is 
present – for fixed panels at 0o and 15o elevation). WIS:dom® can update the magnitude of these losses to 
account for improved technology in the future or panel performance degradation with age.   
 
The technologies for utility scale PV range from simplest and least cost (Fixed panels with 0-degree tilt) to 
most complex and highest cost (dual-axis panels).  The fixed panels at 0-degree tilt will result in the lowest 
power capacity factors while the dual-axis panels will result in the highest as they track the sun across the 
sky to ensure maximum possible power production [see Figure 1.7-A (top-left and bottom-left panels, 
respectively)]. WIS:dom®-P can determine using the weather data if the added complexity of the PV 
technologies is worth the additional cost in terms of increased power production. As seen from Figure 1.7-
A (top-right panel), Fixed panels at various elevation angles (with respect to the latitude of the geographic 
location) are the optimal choice for most of the CONUS with only the northern-most part of the country 
justified in using either single or dual axis tracking. 
 

 
 

Figure 1.7-A.  The solar power dataset. Mean solar PV capacity factor for fixed panel at 0o elevation for year 2014 (top left), mean 
solar PV capacity factor for a two-axis tracking PV panel for year 2014 (bottom left), optimal PV panel type for the CONUS (top right), 

and utility PV siting constraints for the CONUS (bottom right). 
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Figure 1.7-B: Average azimuth (top) and tilt (bottom) for each 3-km cell within the WIS:dom®-P model. Areas in white are locations 

with no available suitable rooftop area. 
 

To accurately calculate expected power production from rooftop solar panels, the azimuth and tilts of 
suitable rooftop in each 3-km cell are needed. The most accurate dataset containing this information was 
compiled by the National Renewable Energy Laboratory (NREL) using Light Detection and Ranging (Lidar) 
measurements of rooftops over the CONUS2. Using the lidar measurements, the rooftop azimuth, tilt and 
rooftop area were calculated.   
 
Shading of the rooftops was determined by running a shading simulation that calculated the number of 
hours of sunlight received by each square meter of the rooftop over four days: March 21, June 21, 
September 21, December 21 based on the geometry of the rooftop.  Portions of the rooftop that were 
excessively shaded (more than 20% of the time) were marked as unsuitable. In addition, portions of the 
rooftop facing northwest through northeast (292.5o to 67.5o from north) were also considered unsuitable. 
Each rooftop plane with projected horizontal area smaller than 10 m2 was also excluded. 
 
The buildings in each zip-code were grouped into three categories: small (94% of buildings and 58% of the 
rooftop area), medium (5% of buildings and 18% of the rooftop area) and large (1% of buildings and 24% 
of rooftop area).  For each of the building category, the tilts were grouped into 5 bins:  
 

                                                 
2 Gagnon, Pieter; Margolis, Robert; Phillips, Caleb (2019): Rooftop Photovoltaic Technical Potential in the United States. National Renewable Energy 
Laboratory. https://data.nrel.gov/submissions/121 
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(1) flat (less than 9.5o in elevation); 
(2) 15.8o (between 9.5o and 22.1o in elevation); 
(3) 28.4o (between 22.1o and 34.8o in elevation); 
(4) 41.1o (between 34.8o and 47.4o in elevation); 
(5) 53.7o (between 47.4o and 60.0o in elevation). 

 
The azimuths were also grouped into 5 bins: 
 

(1) East (between 67.5o and 112.5o from north); 
(2) Southeast (between 112.5o and 157.5o from north); 
(3) South (between 157.5o and 202.5o from north); 
(4) Southwest (between 202.5o and 247.5o from north); 
(5) West (between 247.5o and 292.5o from north). 

 
For each zip-code area, the rooftop area weighted azimuth and tilts are calculated. These values are then 
applied to each 3-km cell within the zip-code region. The resulting average rooftop azimuth and tilts for 
each 3-km cell are shown in Figure 1.7-B.   
  

https://vibrantcleanenergy.com/


©Vibrant Clean Energy, LLC  Boulder, Colorado 
info@vibrantcleanenergy.com 1st August, 2020 VibrantCleanEnergy.com 

- 22 - 

1.1.2.2 Estimating power from bi-facial solar photovoltaics 
 
Bi-facial solar PV is included in the solar technologies modeled by VCE®, which are able to increase power 
production by using irradiance received on the backside of the panel. This increase in power comes at 
marginally higher cost compared to mono-facial PV panels allowing WIS:dom®-P to determine if the 
additional generation is worth the increased capital cost. VCE® computed the irradiance received by the 
backside of a solar panel using the equations from a method provided by NREL3. 
 
Power production from a bi-facial solar PV panel is calculated similar to a mono-facial panel as described 
in Section 1.1.2, with the radiation incident on the backside of the panel being added to the radiation 
incident on the front side of the panel. The frontside irradiance incident on the bi-facial solar PV panel is 
assumed to be the same as that received by a fixed solar panel with a latitude tilt. The total irradiance 
incident on the backside of a solar panel (Eback) can be calculated as: 
 

𝐸𝐸𝑏𝑏𝑎𝑎𝑜𝑜𝑏𝑏 = � 𝑇𝑇𝑆𝑆𝑖𝑖 ∗ 𝑓𝑓𝑖𝑖  ∗  𝜌𝜌 ∗ 𝐺𝐺𝑅𝑅𝐷𝐷
180

𝑖𝑖=𝐿𝐿𝑎𝑎𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒

 

(BF-1) 
 

where, GRI is irradiance received by the ground, 𝑇𝑇𝑆𝑆𝑖𝑖 is the configuration factor for the ith one-degree 
segment defined as: 
 

𝑇𝑇𝑆𝑆𝑖𝑖 = 0.5 ∗ [cos(i − 1) −  cos(i)] 
 
and fi is the angle of incidence correction for the ith one-degree segment calculated using the polynomial 
relationship: 
 

𝑓𝑓𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖 + 𝑏𝑏2 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖2 + 𝑏𝑏3 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖3 + 𝑏𝑏4 ∗ 𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖4 
 
where,  AOIi is the angle of incidence of the irradiance from the ground on the ith one-degree segment  
on the back-side of the PV panel and 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 are constants. The bi-facial solar PV panels are assumed 
to be deployed with a tilt equal to the latitude of their siting location. The field of view of the backside of 
the panel is divided into segments from the panel tilt angle to 180o. This limitation from a full 180-degree 
view is performed to exclude the portion of irradiance blocked by the solar panel itself. Finally, ρ is the 
Albedo defined as the ratio of the upward shortwave radiation from the surface versus the downward 
shortwave radiation 
 

𝜌𝜌 =  
𝐿𝐿𝑊𝑊𝐿𝐿𝑝𝑝

𝐿𝐿𝑊𝑊𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛
 

(BF-2) 
 
where, 𝐿𝐿𝑊𝑊𝐿𝐿𝑝𝑝 is the shortwave radiation leaving the surface of the earth and 𝐿𝐿𝑊𝑊𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛 is the shortwave 
radiation received at the surface of the Earth, both in 𝑊𝑊/𝑚𝑚2. The downward shortwave radiation will 
dominate, creating a ratio ranging between 0 and 1. A ratio of 0.5 means that 50% of the downward 
shortwave radiation is being reflected back up from the surface. For surfaces that are snowy, this ratio can 
easily be over 60%. In general, the albedo is lower in the summertime. 
 
                                                 
3 B. Marion, S. MacAlpine, C. Deline, A. Asgharzadeh, F. Toor, D. Riley, J. Stein, C. Hansen, “A Practical Irradiance Model for Bifacial PV Modules,” National Renewable 
Energy Laboratory, Presented at IEEE 44th Photovoltaic Specialists Conference, 2017. 

https://vibrantcleanenergy.com/


©Vibrant Clean Energy, LLC  Boulder, Colorado 
info@vibrantcleanenergy.com 1st August, 2020 VibrantCleanEnergy.com 

- 23 - 

The irradiance received by the ground can be calculated using: 
 

𝐺𝐺𝑅𝑅𝐷𝐷𝑛𝑛 =  𝛼𝛼 ∗ (𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝑜𝑜𝑖𝑖𝑟𝑟) + 𝑇𝑇𝑆𝑆𝑠𝑠𝑏𝑏𝑦𝑦 ∗  𝐷𝐷𝑠𝑠𝑏𝑏𝑦𝑦 
(BF-3) 

 
where, GRI is the ground irradiance, n denotes the nth segment of the ground between solar panel array 
rows, α is the cosine of the solar zenith angle, 𝐷𝐷𝑜𝑜𝑖𝑖𝑟𝑟 is the circumsolar irradiance, 𝐷𝐷𝑠𝑠𝑏𝑏𝑦𝑦 is the Diffuse Horizontal 
Irradiance (DHI) and 𝑇𝑇𝑆𝑆𝑠𝑠𝑏𝑏𝑦𝑦 = 0.5 ∗ (𝑑𝑑𝑙𝑙𝑠𝑠𝜃𝜃𝑠𝑠1 − 𝑑𝑑𝑙𝑙𝑠𝑠𝜃𝜃𝑠𝑠2) is the configuration factor where  𝜃𝜃𝑠𝑠1  is the view angle 
of the sky blocked by a solar panel in the next row and 𝜃𝜃𝑠𝑠2 is the unblocked view angle of the sky. Since the 
array layout is unknown, no shading is assumed between PV panel rows. As a result, 𝜃𝜃𝑠𝑠1 𝑖𝑖𝑠𝑠 𝑠𝑠𝑑𝑑𝑟𝑟𝑙𝑙 and 𝜃𝜃𝑠𝑠2 
become 180 degrees which results in 𝑇𝑇𝑆𝑆𝑠𝑠𝑏𝑏𝑦𝑦 to be a factor of 1. 
 
As outputs from a numerical weather prediction model are used to calculate DNI, the circumsolar correction 
is unnecessary (DNI calculated from the HRRR is described in Section 4.4.2). In contrast, when using physical 
measurement devices that measure DNI, the circumsolar irradiance would have to be considered and added 
to the DNI separately4. As a result, Eq. (BF-3) reduces to: 
 

𝐺𝐺𝑅𝑅𝐷𝐷 =  𝛼𝛼 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐺𝐺𝐷𝐷 
(BF-4) 

 
From Eq. (BF-4), GRI is simply the Global Horizontal Irradiance (GHI) measured at the surface. This parameter 
is calculated as described in Section 4.4.2.   
 
The irradiance on the back-side of the PV panel (Eback) calculated from Eq. (BF-1) is added to Eb  [Eq. (33) in 
Section 1.1.2], which gives the total irradiation incident on a bi-facial solar PV panel. The solar power 
calculation procedure is exactly as described in Section 1.1.2 except the maximum power allowed from the 
bi-facial panel is limited to 125% of the solar PV panel nominal capacity.  
  

                                                 
4 P. Blanc et al., “Direct normal irradiance related definitions and applications: The circumsolar issue,” Sol. Energy, vol. 110, pp. 561–577, 2014. 
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1.1.3 Temperature power dataset method 
 
Temperature is an important variable in creating the load profiles datasets. Ambient temperatures affect 
heating (both space and water) and cooling demand, heat rates of conventional generators, transmission 
losses and ampacity as well as energy use by EVs. Temperature data is available from the HRRR at 3-km 
spatial resolution and 5-min temporal resolution.   
 
The loads are evaluated at state-level and hourly time-resolution. Therefore, the temperature data needs to 
be aggregated to state-level, while preserving the spatial variability information present in the original 
higher resolution dataset. To do this, the temperature data is aggregated to state level by weighting each 
3-km HRRR cell by the fraction of the state population in the cell. The population weighting ensures that 
locations of denser populations get greater weighting on temperatures and hence will have a stronger 
impact on the demand profile. A similar technique is used to create average temperatures at county level. 
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1.2 Electric Demand Dataset 
 
The same methods outlined in the present section are applied to all counties and states across the 
contiguous USA. We provide example state profiles for descriptive purposes and provide a quantifiable 
example while explaining the concepts for creating the demand datasets. 
 

1.2.1 Traditional demand profiles 
 
State-level hourly loads were developed from FERC 714 data [13]. This database includes hourly load data 
from grid balancing authorities. Balancing authorities maintain appropriate operating conditions for the 
electric system by ensuring that a sufficient supply of electricity is available to serve expected demand, 
which includes managing transfers of electricity with other balancing authorities [14].   
 
The balancing authorities in the database were assigned to states that they most represent and hourly 
profiles for each of the contiguous US states were developed for 2014 - 2018 by summing the hourly load 
data for each state. These profiles were then normalized by the annual energy consumption of each state 
for each year. The process is shown by Equation (35) 
 

𝐿𝐿𝑗𝑗,ℎ = �𝐵𝐵𝐴𝐴𝑖𝑖,𝑗𝑗,ℎ

𝑛𝑛

𝑖𝑖=1

×
𝐿𝐿𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎

∑ ∑ 𝐵𝐵𝐴𝐴𝑖𝑖,𝑗𝑗,ℎ
𝑛𝑛
𝑖𝑖=1

8760
ℎ=1

.                                                                 (35) 

 
Here 𝐿𝐿𝑗𝑗,ℎ is the load for state 𝑗𝑗 at hour ℎ, 𝐵𝐵𝐴𝐴𝑖𝑖,𝑗𝑗,ℎ is the hourly output for each balance authority 𝑖𝑖 (from the 
FERC 714 data) associated with state 𝑗𝑗 at hour ℎ (thus, the summation of which equals the calculated hourly 
load per state), and 𝐿𝐿𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎 is the actual annual load for state j taken from EIA data. The double summation in 
the denominator of the fraction is simply the estimated annual state load for state 𝑗𝑗 (from the FERC 714 
data).  
 
States that were not represented in the FERC database (for lack of a balancing authority or missing data) 
were assigned to have the same profile as a neighboring state, but were normalized by their own actual 
annual load. 

 
Figure 1.8: Total annual electricity consumption by state for year 2018 generated from FERC 714 data. 

 
Finally, each county was assigned the share of its state load in proportion to its share of the total state 
population. While there will be differences in counties’ load profiles based on their type of load, i.e. heavily 
industrialized counties will have different load patterns than mostly residential counties, these data simply 
do not exist in any currently-accessible form. 
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1.2.2 Space heating demand profiles 
 
Space heating demand depends on local climate and variability in temperature over a year. It is assumed 
that the ideal indoor temperature (Tideal) for the building stock is 22oC. To calculate flexibility in space 
heating, it is assumed that the indoor temperature is allowed to drop to 20oC. 
 
The energy rate required to maintain the building stock at Tideal given outside temperature of Tout is given 
by 
 

�̇�𝑄 = 𝐻𝐻.𝐴𝐴. (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎)                                                                                  (36) 
 
where H is the heat transfer coefficient, and A is the cross-sectional area over which heat transfer occurs. 
 
The value of the heat transfer coefficient varies as function of building material and insulation characteristics, 
and cross-section area (A) changes depending on size and shape of the buildings.  However, assuming these 
values do not change over the course of the year, they do not need to be explicitly quantified if the fractional 
energy rate at a given time step is used. The fractional energy rate at a given time step is defined as 
 

𝑄𝑄𝚤𝚤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖(𝑡𝑡) =
𝐻𝐻.𝐴𝐴. �𝑇𝑇𝚤𝚤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)�
∑ 𝐻𝐻.𝐴𝐴. �𝑇𝑇𝚤𝚤𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)�𝑎𝑎

̇
                                                                          (37) 

 

⇒ 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖(𝑡𝑡)  =
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)

∑ �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)�𝑎𝑎
.                                                                           (38) 

 
The negative values are set to zero (as no heating will be required when outside temperature is above the 
ideal indoor temperature) before normalizing. The fractional energy rate, when multiplied with the total 
space heating energy use in a year, gives the energy required for space heating for a given timestep in that 
year. Figure 1.9 shows fractional energy use profiles for Minnesota and California created for the year 2018. 

 

 
Figure 1.9: Average fraction energy used for space heating in Minnesota and California in 2018. It is observed that in Minnesota 

there is heating requirements throughout the year, whereas it goes to zero in California during the summer. 
 
It can be seen in Figure 1.9 that Minnesota, which is a colder state, has heating requirement almost all year, 
while California has zero heating requirements for parts of the summer. It is important to note that although 
the fractional energy used per timestep in California may be larger in a given hour compared to Minnesota, 
the actual energy use might be much smaller as these fractional values get multiplied by the annual energy 
used for heating within that state. 
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1.2.3 Water heating demand profiles 
 
Water heating is modelled in a similar manner to the space heating. It is assumed that the ideal water 
temperature to be maintained is 60oC. It is further assumed that the incoming water temperature is 
correlated to the outside air temperature. Given these assumptions, fractional energy use for water heating 
at a given timestep is calculated using Eq (38).   
 
Figure 1.10 shows fraction water heating energy use in Minnesota and California. Unlike space heating 
energy use, it is observed that the profiles for the two states are very similar. The reason for this is that the 
temperature gradient required to be maintained is so large that the differences in climate is less important. 
It is, however, observed that energy use at the coldest time in winter is about double the energy use at the 
warmest time in summer. 
 

 
Figure 1.10: Average fractional energy used for water heating in Minnesota and California in 2018. 
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1.2.4 Space heating flexibility 
 
To calculate flexibility in space heating load, it is assumed that the ideal indoor temperature can be allowed 
to drop to 20oC (Tflex) for short periods. Therefore, the fractional energy use at each time step assuming 
temperature is allowed to drop to Tflex is: 
 

𝑄𝑄𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(𝑡𝑡) =
𝑇𝑇𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)

∑ �𝑇𝑇𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)�𝑎𝑎

.                                                                                  (39) 

 
The negative values are set to zero in a similar manner to the space heating calculation. From Equations 
(38) and (39), the flexibility at each time step can be defined as 
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 1 − 𝜙𝜙
𝑄𝑄𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(𝑡𝑡)
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖(𝑡𝑡)

.                                                                                         (40) 

 
Here 𝜙𝜙 is a parameter to set the enforced strictness of flexibility. This parameter can be any value between 
0 and 1. When 𝜙𝜙 = 1 the flexibility is at its strictest (fully constrained by ambient outside temperature), while 
at 𝜙𝜙 = 0 flexibility is fully available regardless of outside temperature. 
 

 
Figure 1.11: Space heating flexibility for Minnesota and California in 2018 for 𝜙𝜙 = 1. 

 
As seen in Figure 1.11, when space heating demand is very high (see Fig. 1.9) the availability of flexibility is 
limited in Minnesota during winter because the ambient air temperature is so low that the buildings would 
cool below the allowed threshold. For California, there is substantial flexibility in space heating for many 
timesteps during the winter, because the ambient temperatures tend to be much milder. It is also observed 
that flexibility goes to zero in California in summer. This is due to the fact that no space heating is required 
during those timesteps and hence there is zero flexibility for space heating load. In colder states, such a 
Minnesota, space heating needs are present for more time-periods over a year and, thus, there is flexibility 
associated with that space heating need. 
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1.2.5 Transportation demand profiles 
 
Energy used by electric vehicles can be broadly divided into two components: Energy used for driving the 
vehicle and energy used for cabin heating/cooling. Both these components are dependent on weather and 
have trends that change over the course of a year. In addition, driving habits vary depending on the region 
and time of the year. 
 
The energy consumed for cabin heating and cooling is given by a modified form of Equation (36) as 
 

𝑄𝑄𝑎𝑎𝑎𝑎𝑐𝑐𝚤𝚤𝑛𝑛̇ = 𝐻𝐻.𝐴𝐴. |(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎)|,                                                                               (41) 
 
where Tideal is the ideal cabin temperature assumed equal to 22oC and Tout is the outside temperature. The 
absolute value of temperature gradient is used because when outside temperature is too high, cabin cooling 
takes over from cabin heating, but the energy use is still proportional to the temperature gradient. The 
fractional energy use for cabin heating or cooling at each time step can now be calculated using an equation 
similar to (38): 
 

𝑄𝑄𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛(𝑡𝑡)  =
|𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)|

∑ ��𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎(𝑡𝑡)��𝑎𝑎
.                                                                           (42) 

 
To calculate the energy used for driving, the driving behavior for each state in the contiguous United States 
(CONUS) is obtained from the Department of Transport, Office of Highway Policy Information for year 2018. 
The data is available as monthly averages for the year 2018. The curves are cubic interpolated to create data 
at each 5-min timestep. The fractional energy use for driving can then be calculated as 
 

𝑄𝑄𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖(𝑡𝑡) =
𝐷𝐷𝑠𝑠(𝑡𝑡)
∑ 𝐷𝐷𝑠𝑠(𝑡𝑡)𝑎𝑎

,                                                                          (43) 

 
where, Ds(t) is the miles driven at each timestep. 
 

 
Figure 1.12: Fractional miles driven in a 5-min timestep for each state in the CONUS. 

 
The total energy used by EVs is now a sum of Equations (42) and (43). Since the values are fractional energy 
use, a multiplier, 𝛼𝛼 (equal to 10%), is applied to Qcabin, which is then added to Qdrive. This is done because it 
is assumed that heating/cooling accounts for about 10% to the total energy used for EVs. Thus, the total 
fractional energy use is calculated as 
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𝑄𝑄𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖 =
1

(1 + 𝛼𝛼)
[𝑄𝑄𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 + 𝛼𝛼𝑄𝑄𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛].                                                              (44) 

 
The efficiency of running EVs depends on ambient temperatures. The impacts of ambient temperature are 
(in addition to the cabin heating/cooling) battery internal resistance changes, tire pressure changes, and air 
density changes. Therefore, the actual energy used by an EV is obtained by multiplying the total energy use 
by the inverse of the energy efficiency (given by 𝜂𝜂(𝑡𝑡) – see Figure 1.13 left panel) due to the ambient 
temperature at that time step as shown in Equation (45). 
 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖(𝑡𝑡) =
1
𝜂𝜂(𝑡𝑡)

1
(1 + 𝛼𝛼)

[𝑄𝑄𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 + 𝛼𝛼𝑄𝑄𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛].                                                            (45) 

 

 
Figure 1.13: Relationship between EV efficiency and temperature (left) and EV charging behavior (right). 

 
The way the EV energy use becomes a load on the grid is when the EV is plugged in to charge the battery. 
The charging behavior is obtained from a study of charging behavior performed by Idaho National 
Laboratory in 2013. In this study, a composite profile of all the states studied in the Idaho National 
Laboratory report at hourly resolution is used. The charging behavior is then adjusted for time-zone (see 
Figure 1.14) and normalized by the sum of the time series.  
 

 
Figure 1.14: Time zones for counties in the CONUS used to localize charging behavior. 

 
The fractional charging behavior is multiplied with the actual EV energy use profile to get the fractional 
energy demand by EVs at each time step 
 

𝑄𝑄𝐸𝐸𝐸𝐸(𝑡𝑡) = 𝐶𝐶𝑓𝑓(𝑡𝑡) ∗ 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖(𝑡𝑡),                                                                                     (46) 
 
where Cf is the fractional charging behavior at each time step. 
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Figure 1.15 shows fractional transportation electricity demand profiles in Minnesota and California. The 
shape of the electricity demand profile in Minnesota resembles the shape of the heating energy use. The 
reason for this is that the cold weather in Minnesota increases energy use for heating the cabin, while 
dealing with lower energy efficiency, which results in much higher electricity demand in winter than in 
summer. Whereas, the California transportation electricity demand profiles show much better correlation 
with the driving behavior. This points to the milder climate in California. 
 

 
Figure 1.15: Fractional EV energy use for two states for 2018.  The relative importance of efficiency and energy use as function of 

temperature compared to driving behavior is clearly seen. 
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1.3 Removing Space, Water Heating and Transport from Historical 
Electricity Use 

 
WIS:dom® uses historical load data from FERC form 714 to create the basis for the demand curves as 
explained in Section 1.2. The historical data contains contributions from demand for space heating, water 
heating and EV energy use. To enable modeling demand from space heating, water heating and transport 
separately, they need to be removed from historical energy use numbers to avoid double counting the 
demand.   
 
The total demand is given by: 
 

𝐷𝐷𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑁𝑁𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑(𝑡𝑡) + 𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎)𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝐴𝐴𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑁𝑁𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝐴𝐴𝐸𝐸𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡)                                  (47) 
 
where, Dhist(t) is the historical demand curve, Aconv is the annual conventional demand, Nconv(t) is the 
normalized conventional demand curve at hourly resolution, AspHeat is the annual space heating demand, 
NspHeat(t) is the normalized space heating demand curve at hourly resolution, AwHeat is the annual water 
heating demand, NwHeat(t) is the normalized water heating demand curve at hourly resolution, AEV is the 
annual demand for EV, and NEV(t) is the normalized EV demand curve at hourly resolution. 
 
Since the FERC data does not split the demand out into categories, the historical demand obtained from 
FERC is given by: 
 

𝐷𝐷ℎ𝑖𝑖𝑠𝑠𝑎𝑎(𝑡𝑡) = �𝐴𝐴𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑 + 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎 + 𝐴𝐴𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎 + 𝐴𝐴𝐸𝐸𝐸𝐸� ∗ 𝑁𝑁ℎ𝑖𝑖𝑠𝑠𝑎𝑎(𝑡𝑡)                                                    (48) 
 
where, Dhist(t) is the historical demand curve from FERC form 714 and 𝑁𝑁ℎ𝑖𝑖𝑠𝑠𝑎𝑎 = 𝐷𝐷ℎ𝑖𝑖𝑠𝑠𝑎𝑎

∑ 𝐷𝐷ℎ𝑖𝑖𝑠𝑠𝑎𝑎(𝑡𝑡)𝑎𝑎
�  is the 

normalized historical demand curve at hourly resolution. 
 
The normalized historical demand curves for Minnesota and California are shown in Figure 1.16. 
 

 
Figure 1.16: Normalized historical demand curves calculated from FERC form 714 for Minnesota (left) and California (right). 

 
Since, the historical demand is equal to the total demand at model initialization, the adjusted normalized 
conventional demand, which removed contributions from space heating, water heating and transport can 
be calculated using Equations (47) and (48) by: 
 

𝑁𝑁𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑(𝑡𝑡) =  1
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
�𝐴𝐴𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑 + 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎 + 𝐴𝐴𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎 + 𝐴𝐴𝐸𝐸𝐸𝐸� ∗ 𝑁𝑁ℎ𝑖𝑖𝑠𝑠𝑎𝑎(𝑡𝑡)

−�𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝐴𝐴𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎𝑁𝑁𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝐴𝐴𝐸𝐸𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡)�
�                              (49) 

The adjusted normalized conventional demand curve calculated using Equation (49) is shown in Figure 1.17. 
It is observed that the winter periods show a smaller fraction as the space heating contributions are removed 
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and the summer portion of the curve show larger fractions as they make up a larger portion of the energy 
use. 
 

 
Figure 1.17: Adjusted normalized conventional demand curves after removing contributions from space heating, water heating and 

transport for Minnesota (left) and California (right). 
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1.4 Transmission Line Rating & Electric Losses Dataset 
 
As ambient temperatures increase, transmission lines are less able to reject heat generated due to resistive 
heating of the transmission lines. As a result, a decision has to be made on whether to operate the 
transmission line at a higher temperature (which increases losses) while keeping the full rating or to de-rate 
the transmission capacity to prevent damage to the conductor or the surroundings due to the sag of the 
transmission line. WIS:dom® models the transmission lines assuming steady state energy balance, where 
heat gained due to resistive heating (𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and solar irradiance (𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐) equals heat lost due to 
convective heat transfer (𝑞𝑞𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐) and radiative heat transfer (𝑞𝑞𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐) as 
 

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑞𝑞𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐.                                                (50) 
 
Resistive heating is given by 
 

       𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼2𝑅𝑅(𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟),                                                                                          (51) 
 
where, 𝐼𝐼 is the current in the transmission line, and 𝑅𝑅(𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟) is the resistance of the transmission line which 
itself is a function of conductor temperature (𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟). The resistance of the conductor is related to the 
conductor temperature by 
 

𝑅𝑅(𝑇𝑇2) = 𝑅𝑅(𝑇𝑇1) ∗ [1 + 𝛼𝛼(𝑇𝑇2 − 𝑇𝑇1)],                                                                          (52) 
 
where, 𝛼𝛼 is a constant with a value of 0.0039 and T1 and T2 are the initial and final temperatures of the 
conductor. 
 
Heating due to solar irradiance is calculated assuming the conductor is a black body and can be calculated 
using 
 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 = 𝛿𝛿 ∗ 𝜋𝜋𝜋𝜋 ∗ 𝑎𝑎𝑠𝑠,                                                                                         (53) 
 
where,  𝛿𝛿 is the downward short-wave solar radiation in W/m2, D is the diameter of the conductor, and 𝑎𝑎𝑠𝑠 
is the absorptivity of the conductor (assumed to be 0.9). 
 
The convective heat transfer from the conductor to its surroundings is given by 
 

𝑞𝑞𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ ∗ 𝜋𝜋𝜋𝜋 ∗ (𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑐𝑐).                                                             (54) 
 
Here, h is the convective heat transfer coefficient given by 
 

ℎ = 𝑁𝑁𝑁𝑁 ∗ 𝑘𝑘 𝜋𝜋� ,                                                                                           (55) 
 
where, Nu is the Nusselt number and k is the thermal conductivity of air in W/m-K. 
 
The Nusselt number can be calculated using 
 

𝑁𝑁𝑁𝑁 = 0.3 +
𝑎𝑎
𝑏𝑏

(1 + 𝑐𝑐)4 5� ,                                                                               (56) 
 

https://vibrantcleanenergy.com/


©Vibrant Clean Energy, LLC  Boulder, Colorado 
info@vibrantcleanenergy.com 1st August, 2020 VibrantCleanEnergy.com 

- 36 - 

where, 𝑎𝑎 = 0.62 ∗ 𝑅𝑅𝑅𝑅1 2� ∗ 𝑃𝑃𝑃𝑃1 3� , 𝑏𝑏 = �1 + �0.4
𝑃𝑃𝑐𝑐
�
2
3� �
1
4�

, 𝑐𝑐 = � 𝑅𝑅𝑐𝑐
282,000

�
5
8� , 𝑅𝑅𝑅𝑅 = 𝑉𝑉 ∗ 𝜋𝜋 𝜈𝜈�  is the Reynold’s 

number, Pr is the Prandtl’s number, V is the wind speed, and 𝜈𝜈 is the dynamic viscosity. 
 
The heat lost from the conductor due to radiative heat transfer is calculated using 
 

𝑞𝑞𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜀𝜀 ∗ 𝜎𝜎 ∗ 𝜋𝜋 ∗ 𝜋𝜋 ∗ (𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟4 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑐𝑐4 ),                                            (57) 
 
where,  𝜀𝜀 is the emissivity of the conductor (assumed to be 0.7) and 𝜎𝜎 is the Stefan-Boltzman constant equal 
to 5.67E-8 W/m2-K4. 
 
Using Equations (50) - (57), the allowable current to maintain a given conductor temperature (Tcond) is given 
by 

𝐼𝐼 = �
𝜋𝜋 ∗ ℎ ∗ 𝜋𝜋 ∗ (𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑐𝑐) + 𝜋𝜋 ∗ 𝜀𝜀 ∗ 𝜎𝜎 ∗ 𝜋𝜋 ∗ (𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟4 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑐𝑐4 ) − 𝛿𝛿 ∗ 𝜋𝜋 ∗ 𝜋𝜋 ∗ 𝑎𝑎𝑠𝑠

𝑅𝑅(𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟) .                         (58) 

 
The current method for computing the high-temporal (dynamic) transmission line rating assumes that each 
transmission line is already appropriately rated based on yearly average local weather conditions. It is then 
determined what the up- and down- rating should be applied to safely utilized the transmission line. 
Therefore, Equation (58) is used to calculate the maximum current that can be sent through a transmission 
line while maintaining an ideal conductor surface temperature of 75oC. Once the allowable current values 
are calculated, the current values are normalized by the average current value for the CONUS over the year, 
which gives the fractional dynamic line rating for each timestep over the year. 
 
From the above method of determining the fractional dynamic transmission line rating, there will be periods 
(usually in winter) where the transmission rating will be greater than unity and periods (usually in summer) 
where it will be less than unity. A secondary step is now added to the method, where it is assumed that 
when the fractional dynamic transmission line rating is less than unity, the conductor temperature can 
increase up to 95oC in order to try and increase the fractional dynamic transmission line rating back to unity. 
The conductor temperature can be calculated using Equation (55) by iteratively increasing conductor 
temperature until a fractional dynamic transmission line rating of unity is achieved. If the conductor 
temperature reaches 95oC before the fractional dynamic line rating reaches unity, no further increase in 
temperature is allowed. Thus, some periods will have a fractional dynamic line rating that is less than unity 
since it is no longer safe to increase the fractional dynamic line rating. 
 
An additional constraint imposed is that the temperature gradient between the conductor core and its 
surface is not allowed to exceed a safe value (IEEE recommended value is 10oC). The temperature gradient 
between the conductor surface and its core can be calculated using 

𝑇𝑇𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑠𝑠 =
𝐼𝐼2𝑅𝑅�𝑇𝑇𝑠𝑠𝑐𝑐𝑎𝑎�

4𝜋𝜋𝑘𝑘𝑐𝑐ℎ
,                                                                                 (59) 

 
where Tcore is the conductor core temperature, Ts is the conductor surface temperature, kth is the thermal 
conductivity of the conductor material, R(Tavg) is the conductor resistance at the average temperature of the 
surface and core. 
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Since the calculations performed here are relative, the safe temperature gradient is determined by using 
the average temperature gradient observed during periods of fractional dynamic line rating greater than 
unity. The line ratings are then re-calculated to ensure this temperature gradient is not exceeded. 
 
The final conductor temperatures obtained from the above procedure are used to calculate the change in 
dynamic transmission line electric losses. The dynamic transmission line electric losses depend on the 
current passing through the conductor as well as its resistance. The resistance of the conductor is a function 
of temperature as given in Equation (52), while at higher conductor temperatures, the transmission line is 
de-rated to send lower current through the line. Therefore, the dynamic transmission electric losses is 
calculated using 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐ℎ𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐 =
𝐼𝐼(𝑡𝑡)2𝑅𝑅(𝑡𝑡)

𝐼𝐼𝑠𝑠𝑐𝑐𝑎𝑎2 𝑅𝑅(75𝑠𝑠𝐶𝐶),                                                                                  (60) 

 
where, I(t) is the current rating of the conductor at each timestep calculated from Equation (58), R(t) is the 
resistance at each timestep calculated using Equation (52), Iavg is the average current rating of the conductor, 
and R(75oC) is the resistance of the conductor at 75oC. 
 
Equation (60) shows that the dynamic transmission line electric losses are proportional to the square of the 
current flowing through the conductor and directly proportional to the change in resistance, which increases 
linearly with conductor temperature. As a result, during colder periods, more current will be flowing through 
the transmission lines (due to the dynamic transmission line rating being greater than unity) and, hence, 
will have larger dynamic transmission line electric losses even though the resistance will be lower. Whereas, 
in hotter periods, the transmission line will be de-rated, so transmission line electric losses will be lower 
although the resistance of the conductor is higher. There will be variations to this behavior depending on 
the amount on derating/uprating and change in conductor temperature.   
 
It is important to note that this method of determining fractional dynamic transmission line rating is 
designed to be relative and not absolute. The method assumes that transmission lines are already rated for 
the yearly average local weather conditions. Starting from that assumption, it is determined how much 
uprating/derating results from requiring that the transmission line is used to its maximum potential while 
ensuring safe operational conditions. 
 
Figure 1.18 shows the fractional dynamic transmission line rating and dynamic transmission line electric 
losses for Minnesota and California. While California has lower fractional dynamic transmission line rating 
compared to Minnesota due to its warmer weather, it has less variability in transmission rating changes due 
to its lower inter-seasonal variability in temperature. For Minnesota, the dynamic transmission line electric 
losses show a similar pattern as the fractional dynamic transmission line rating because the losses are 
proportional to the square of the current passing through the conductor and hence the change in current 
dominate in the changes to the losses. It is further observed from Figure 1.18 (bottom panel) that change 
in losses in California are less correlated with changes in transmission rating. The is due to the smaller 
variability in transmission rating in California resulting in smaller changes to the current, which makes them 
on the same order as changes to the resistance of the conductor.  
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Figure 1.18: Fractional dynamic transmission line rating (top) and fractional dynamic transmission line electric losses (bottom) for 

Minnesota and California. 
 
The fractional dynamic transmission line ratings and electric losses exhibit the expected patterns for the 
CONUS as seen in Figure 1.19. It is observed that warmer regions of the CONUS such as the south-east and 
the south-west have lower than average fractional dynamic transmission line ratings (and consequently, 
lower average fractional dynamic transmission line electric losses). Meanwhile the Midwest and central 
portions of the CONUS have higher than average fractional dynamic transmission line rating (and 
consequently higher average fractional dynamic transmission line electric losses). 
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Figure 1.19: Average fractional dynamic transmission line rating (left) and electric losses (right) for the CONUS for weather year 2018. 
Top panels show deviation of line rating and electric losses from the CONUS average, middle panels show the maximum line rating 

and losses, and the bottom panels show the minimum line rating and losses. 
 
Looking at the maximum line rating for the year (middle panel), it is observed that the higher than average 
line ratings in the Midwest are driven mostly by the higher maximum line ratings possible in those states 
(as these states also tend to have lower minimums). It is also observed that states with lower than average 
line ratings show a smaller spread between in their maximum and minimum values. 
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1.5 Climate Change Dataset 
 
Anthropogenically driven climate change creates changes in mean meteorological parameters such as wind 
speed, solar irradiance reaching the surface, precipitation, temperature and so on. Changes in these 
meteorological parameters result in alterations in the performance of wind turbines, solar PV cells, 
conventional power plants (through heat rates and water availability) and transmission line ratings and 
losses on the generation side. On the demand side, the changes due to climate will result in shifts to the 
heating and cooling loads, available flexibility, and EV energy use. 
 
WIS:dom® models the impact of climate change on both the demand side and generation side. The United 
Kingdom Meteorological (UK Met) climate model, HagGEM2-ES, results from CMIP5 are used to estimate 
the changes in various meteorological variables affecting energy generation and demand. WIS:dom® 
updates the impact of climate change on the meteorological variables at each investment period, which 
occurs every 5 years. As a result, effects of large-scale climate cycles, such as El Nino/La Nina, can create 
large variations depending the year chosen as investment period. To reduce the variability introduced 
through these large-scale climate cycles, the meteorological variables from the climate models are 
smoothed using a 5-year moving window. Figure 1.20 shows the change in surface temperature for two 
Representative Concentration Pathway (RCP) scenarios after applying the 5-year moving average. The 
impact of climate change on surface temperatures is clearly seen. In the RCP 4.5 scenario, it is observed that 
more temperature increases are seen in the winter months compared to the summer while in the RCP 8.5 
scenario, higher temperature rises are observed in the summer and extends warmer weather to later parts 
of the year. 
 

 
Figure 1.20: Change in average temperature over the CONUS over the course of a year out to 2100. 

 
The following subsections describe how the climate change impacts each aspect of generation and demand 
within the WIS:dom® modeling framework. 
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1.5.1 Changes to wind energy production potential 
 
The CMIP5 model data that VCE® has access to only provides monthly mean wind speed at 10 m. Therefore, 
the monthly mean 80 m wind speed is estimated using a power law assuming a power law coefficient of 
1/7 (commonly found for neutral boundary layers). The monthly means can be used to create Weibull 
distributions of wind speed for that month. The Weibull distributions are created assuming a shape factor 
(k) of 2, which is commonly found to be the case, and by calculating the scale factor using 
 

𝑐𝑐 =
2 ∗ 𝑣𝑣𝑚𝑚
√𝜋𝜋

,                                                                                                            (61) 

 
where vm is the monthly mean wind speed at 80 m. 
 
Once the shape and scale factors are determined, the estimated wind energy production within that month 
can be determined using 
 

𝑃𝑃𝑐𝑐𝑠𝑠𝑐𝑐 = 0.5 ∗ 𝜌𝜌 ∗ 𝐴𝐴 ∗ 𝐶𝐶𝑝𝑝 ∗�𝑣𝑣3 ∗ 𝑓𝑓(𝑣𝑣).
25

𝑐𝑐=0

                                                                              (62) 

 
The estimated wind energy production is calculated for every year from 2010 to 2100. Now, the change in 
wind energy production with respect to the reference year (2018 in this case) can be calculated. The change 
in wind energy production is now estimated at monthly resolution from 2010 to 2100. The monthly change 
in wind energy production is cubic spline interpolated to hourly resolution, which is used to nudge the wind 
power capacity factors described in Section 2. 
 
Changes in expected wind power over the CONUS show significant spatial variability in both the climate 
RCP scenarios as seen in Figure 1.22. In RCP 4.5, an increase in expected wind power is forecasted over the 
great plains and most of the western part of the CONUS. However, in RCP 8.5, larger increases in wind 
power are forecasted in smaller regions, such as the southeast and the southern great plains, while the 
northern and western parts of the CONUS show a reduction in expected wind power. 
 
It is observed from Figures 4.69 and 4.70 that available wind power over the CONUS under both climate 
scenarios shows significant variability year over year with a generally positive trend. It is unclear whether 
this increase in wind power is observed due to higher wind speeds observed from increased storm and 
hurricane activity. The significant variability observed between each 5-year period shows the challenge that 
might face wind developers as there would be substantial uncertainty on the performance of the wind farms 
which would be difficult to plan for. In addition, locally suitable sites might become undevelopable. 
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Figure 1.21: Change in wind power due to climate change in the RCP 4.5 scenario for 2020 (top left) and 2050 (top right) and in RCP 

8.5 scenario for 2020 (bottom left) and 2050 (bottom right). 
 

 
Figure 1.22: Average change in wind power potential over the CONUS under the RCP 4.5 and RCP 8.5 scenarios. 
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1.5.2 Changes to solar PV energy production potential 
 
As anthropogenic climate change progresses, it is observed that solar irradiance reaching the surface 
increases marginally due to dryer weather conditions. This increase in solar irradiance reaching the surface 
should increase power generation from solar panels. However, the ambient temperatures also increase. This 
increase in ambient temperatures makes solar panels less efficient with about 1% drop in efficiency 
observed for every 1oC increase in temperature [12]. Both these effects are modelled by VCE® to account 
for the impact of climate change on solar power generation potential. 
 
Figure 1.23 shows that in the RCP 4.5 scenario, there is increase in solar irradiance in both the southwest 
and the southeast, however these are accompanied by increases in temperature and as a result there is a 
net reduction in the expected solar power potential (Figure 1.24). In the RCP 8.5 scenario, solar irradiance 
increases in the southeast, and is accompanied by larger increases in temperature in those regions as well. 
 

 
Figure 1.23: Change in solar irradiance reaching the surface in 2050 for climate scenario RCP 4.5 (top left) and RCP 8.5 (top right) 
compared to 2018 and change in 2-m temperature in 2050 in climate scenario RCP 4.5 (bottom left) and RCP 8.5 (bottom right). 

 
It is observed that the combined effect of the change in solar irradiation and 2-m temperatures is to reduce 
the solar power generation by 2050 as displayed in Figure 1.24. The reduction in RCP 8.5 scenario is larger 
(about 2.5%) compared to the RCP 4.5 scenario (about 1.1%). The lower reductions in RCP 4.5 scenario is 
most probably due to the lower temperatures observed in that scenario, which enables higher solar PV cell 
efficiencies compared to those observed in the RCP 8.5 scenario. 
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Figure 1.24: Change in solar power output based on changes in temperature and solar irradiance for the two climate scenarios. 
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1.5.3 Changes to thermal generator heat rates & water 
 
Anthropogenic climate change impacts generation from thermal generators as well as weather-driven 
generators. Higher ambient temperatures result in less efficient operation of the thermal generators in form 
of higher heat rates. In addition, conventional generators are affected by access to water which depends on 
changes in precipitation observed in the two climate scenarios. As seen within Figure 1.25 (left panel), heat 
rates go up on an average by 2.8% in RCP 8.5, while in RCP 4.5 they go up by about 2.5%. The change in 
precipitation (Figure 1.25 right panel) is much more variable with year-on-year changes on the order of 20% 
in both climate scenarios. This indicates the additional uncertainty imposed on the operation of the thermal 
generators, which could lead to unplanned downtimes due to lack of access to water. 

 
Figure 1.25: Average changes in heat rates (left) and precipitation (right) over the CONUS as a result of climate change for the two 

RCP scenarios. 
 
An important aspect of the changes to the heat rates is the timing of their occurrence. During any given 
year, heat rates are their highest in summer due to the higher ambient temperatures. Figure 1.26 shows 
that the effect of climate change is to increase the summer peak heat rates even further. It is observed that 
in the RCP 4.5 scenario, heat rates are increased in winter and summer, while in the RCP 8.5 scenario, just 
the summer peak is seen to increase.  This trend correlates to the temperature changes due to climate 
change (as shown in Figure 1.20), where the RCP4.5 scenario forecasts increased temperatures in winter and 
summer, while in RCP8.5 scenario, larger increases are seen in summer and extension of the summer period. 
 

 
Figure 1.26: Change in heat rates, compared to the yearly averaged value, over the course of a year and impact of climate change in 

the two RCP scenarios. 
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1.5.4 Changes to line ratings & electric losses 
 
As ambient temperatures increase due to climate change, the transmission lines will need to be de-rated to 
prevent excessive heating of the conductor. Some of this effect might be mitigated due to the increase in 
wind speed predicted by the climate models. The transmission line rating under climate stress is estimated 
using the climate data to calculate the allowable current in the conductors using Equation (55) and (56), 
however, it is normalized by the average current calculated for the CONUS using the 2018 weather data. 
The line ratings are then adjusted as before to ensure that the periods below a rating of unity are adjusted 
upward without exceeding safe operating maximum temperature of the conductor and the maximum 
allowable temperature gradient between the conductor core and the surface. The changes to the 
transmission electric losses are calculated by using the new conductor temperatures and current under 
influence of climate change stress and using Equation (57) to determine the new loss term. 
 
As can be seen in Figure 1.27, there is a maximum reduction of about 1% in transmission line rating and 
approximately 2% reduction in transmission line losses averaged over a year in RCP 8.5 scenario, while there 
is about2% reduction in line rating and 3% reduction losses in RCP 4.5 scenario. The larger reduction 
observed in the RCP 4.5 scenario is mainly due to smaller increases in wind speeds forecasted in RCP 4.5 
scenario, which have a larger adverse effect that the larger temperature increases forecasted in RCP 8.5 
scenario. 
 

 
Figure 1.27: Change in transmission line rating (left) and losses (right) due to increase in ambient temperatures due to the effect of 

climate change. 
 
Similar to heat rates, the change in transmission line rating and electric losses show seasonal trends. Figure 
1.28 shows the change in CONUS average transmission line rating and electric losses over a year for weather 
year 2018 (black line), climate scenario RCP 4.5 (red line) and climate scenario RCP 8.5 (blue line). It is 
observed that RCP 4.5 shows higher line ratings and electric losses in the winter periods, which is mainly 
due to the RCP 4.5 scenario forecasting an increase in winter wind speeds compared to 2018.  Meanwhile 
in RCP 8.5 scenario, the winter wind speeds are forecasted to decrease compared to 2018, which combined 
with the ambient temperature increase results in a significant reduction in line ratings (and consequently 
electric losses) in the winter. Both climate scenarios predict a decrease in the summer time transmission line 
rating and electric losses compared to 2018 values. 
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Figure 1.28: Change in transmission line ratings (left) and electric losses (right) compared with the 2018 yearly average value. 
 
The change in transmission line rating and electric losses due to climate change are most sensitive to change 
in ambient temperatures and wind speeds. Figure 1.29 shows the changes in transmission line ratings (left 
panels) and electric losses (right panels) in RCP 4.5 (top panels) and RCP 8.5 (bottom panels) scenarios. It is 
observed in RCP 8.5 scenario that wind speeds decrease over the northern part of the CONUS and increase 
over the southern parts, while the temperatures are seen to increase more over the southern parts of the 
CONUS compared with the northern parts. As a result, the temperature increases in the southern parts of 
the CONUS are mitigated by the higher wind speeds and result in lower derating compared to the northern 
parts of the CONUS in RCP 8.5 scenario. 
 
As explained previously, the transmission electric losses are more sensitive to the change in current rating 
of the conductors than change in resistance. This behavior is evident in the Midwest and a few north-
western states. However, it is observed that the southeast and southwest states show an increase in losses 
although there is a reduction in the line rating. The reason for this is that they have a lower reduction in line 
rating (due to increased wind speeds) combined with a larger increase in ambient temperatures that lead 
to having higher electric losses.   
 

 
Figure 1.29: Impact of climate change on transmission line rating (left) and electric losses (right) for RCP 4.5 (top) and RCP 8.5 

(bottom) scenarios. 
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1.5.5 Changes to space heating demand 
 
As seen from Equation (38), increasing ambient temperatures (due to climate change) reduces the amount 
of energy required to maintain the ideal indoor temperature for the building stock. It is observed that the 
total reduction in energy required for space heating over the CONUS reduces by 8.2% for RCP 8.5 and by 
about 7.5% for RCP 4.5 (see Figure 1.30) due to the increase in ambient temperatures.  

 
Figure 1.30: Change in space heating energy requirements over the CONUS in the two RCP scenarios. 

 
In addition to the amount of reduction in the space heating load, it is important to know when the reduction 
is taking place. Figure 1.30 shows the average fractional space heating energy consumption for the CONUS 
in 2018 and in 2050 for the two RCP scenarios. It can be seen that in the RCP 4.5 scenario, there is a reduction 
in energy needed during the winter months as well as during the summer months. Whereas in the RCP 8.5 
scenario, the reductions occur in the spring and summer season.  As explained before, this trend is due to 
the differences in the timing of the temperature increases forecasted in the two RCP scenarios. The 
variability in the timing of the change in energy use can have important consequences on how WIS:dom® 
resource decisions are made. 
 

 
Figure 1.31: Fractional space heating energy use over the course of a year in the two RCP scenarios compared with 2018. 
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1.5.6 Changes to water heating demand 
 
Impact on water heating is quite small due to the fact that the temperature gradient required to be 
maintained is large and hence smaller increases in ambient temperature due to climate change do not result 
in significant change to the energy requirements. The changes observed are similar to those observed for 
space heating (shown in Figure 1.32), where the RCP 4.5 scenario predicts lower energy usage during the 
winter and summer, while the RCP 8.5 scenario predicts lower energy usage in spring and summer. 
 

 
Figure 1.32: Change in fractional water heating energy use due to RCP change compared with 2018. 
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1.5.7 Changes to conventional & cooling demand 
 
Energy use for space cooling is calculated in a similar manner to space heating energy use by assuming 
ideal indoor temperature as 22oC and using Equation (63) to calculate fraction energy use at each timestep 
 

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)  =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)

∑ �𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑜𝑜
.                                                                           (63) 

 
The fractional energy use is calculated at hourly time resolution for the whole US for each of the years for 
the two climate scenarios. Next, the change in cooling energy use for each timestep is calculated with 
respect to year 2018. Figure 1.33 shows the change in space cooling energy use for the CONUS in the two 
climate scenarios. It is observed that there is about a 16% increase in energy use for cooling in RCP 8.5 and 
about 13% increase in RCP 4.5. 
 

 
Figure 1.33: Change in space cooling energy use over the CONUS for the two RCP scenarios. 

 
In addition to the magnitude of the increase, the timing of increase in energy use is important in 
determining how the demand profile changes. Figure 1.34 shows the change at each hourly timestep for all 
the years in the two climate scenarios. As it would be expected, the largest positive changes occur during 
the summer in both climate scenarios. It is observed that in RCP 8.5 scenario the increase in energy use 
occurs over larger portion of the year. While in the RCP 4.5 scenario, there is a reduction in space cooling 
energy use during spring and fall as the temperatures are forecasted to remain mild during those periods 
in the RCP4.5 scenario. 
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Figure 1.34: Fractional change in each hourly timestep in space cooling demand for the CONUS due to impact of climate change. 
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1.5.8 Changes to transportation demand 
 
The transportation energy use has complicated interaction effects due to impact of climate change.  The 
increasing temperatures reduce the need for heating in the winter while also increasing efficiency as milder 
winters improve battery performance. Whereas, in summer cooling needs increase thereby increasing 
energy use and, in addition, efficiency drops once the temperatures rise above the peak efficiency 
temperature (see Figure 1.36). Thus, climate change not only changes the magnitude of energy consumed 
by EVs over a year, but also changes the timing of the energy use. 
 
Figure 1.35 shows that annual change in EV energy use initially decreases compared to 2018 value reaching 
a minimum in 2020. After 2020, EV energy use increases again until 2030 and after 2035 the trends in EV 
energy use for RCP 4.5 and RCP 8.5 diverge. RCP 4.5 shows a reduction in EV energy use while RCP 8.5 
shows an increase. This upward and downward swings in energy use are due to the constructive and 
destructive interaction effects of change in heating/cooling needs and change in efficiency due to ambient 
temperatures. 
 

 
Figure 1.35: Change in EV energy use in the RCP 4.5 and RCP 8.5 scenarios compared with 2018. 

 
To understand what is driving the increase and decrease in EV energy use better, the change in EV energy 
use for every hour in the year (averaged over the CONUS) is plotted from 2010 to 2050 in Figure 1.36. It is 
observed that the initial reduction in energy use seen from 2010 to 2020 is mainly due to the milder winters 
reducing energy use for cabin heating as well as improved efficiency due to better battery performance in 
the milder weather. However, after 2020, the increased cooling load in summer as well as efficiency 
dropping due to higher temperatures, negates the energy savings in the winter and net energy use increases 
again. 
 
The diverging trends in RCP 4.5 and RCP 8.5 observed after 2035 are also evident in Figure 1.36. As discussed 
before, the RCP 4.5 scenario predicts milder winters and less hot summers compared to RCP 8.5 scenario. 
As a result, in the RCP 4.5 scenario the energy savings in winter catch back up to increased energy use in 
summer and net energy use drops. However, in RCP 8.5 scenario, while there is a decrease in winter energy 
use, the summer energy use increases substantially due to the much warmer temperatures leading to higher 
overall energy use by 2050. 
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Figure 1.36: Change in average EV energy use over a year from 2010 to 2050 in the RCP 4.5 (left) and RCP 8.5 (right) scenarios. 

 
It is also observed from Figure 1.36 that while the total energy change in Figure 1.35 are small, there is 
substantial changes in energy use observed at the hourly level. These changes are further magnified at the 
state level spatial resolution and hourly time resolution. Changes to EV energy use due to climate show 
expected patterns over the CONUS as seen in Figure 1.37. The warmer states in the southeast see an increase 
in EV energy use for both the RCP 4.5 and RCP 8.5 scenarios. In the northeast, there are interesting 
differences in the change to EV energy use in the two climate scenarios. It can be seen that in the RCP 4.5 
scenario there is a small increase to EV energy use in the northwestern states, while in the RCP 8.5 scenarios, 
those states show a reduction in EV energy use.  The reason for this is the milder spring weather forecasted 
in RCP 8.5 scenario, which not only reduces energy use for heating/cooling, but also increase battery 
efficiency resulting in energy savings. 
 

 
Figure 1.37:  Change in EV energy use over the CONUS for the RCP 4.5 scenario (top) and the RCP 8.5 scenario (bottom). 
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