Modeling Renewable Energy, Clean Technologies and Electrification For Deep Decarbonization Future

Prepared By:

Vibrant Clean Energy, LLC

Dr Christopher T M Clack, Dr Aditya Choukulkar, Brianna Coté, Sarah A McKee, Dr Joshua D Rhodes

> Prepared For: Colorado Public Utilities Commission August 23rd, 2019

> > **Disclaimer:**

This presentation has been prepared in good faith on the basis of information available at the date of publication. The analysis was produced by Vibrant Clean Energy, LLC. No guarantee or warranty of the analysis is applicable. Vibrant Clean Energy, LLC will not be held liable for any loss, damage, or cost incurred by using or relying on the information in this presentation.

info@vibrantcleanenergy.com

Who Are We: Vibrant Clean Energy (VCE[®])

Purpose of Vibrant Clean Energy, LLC:

- **Reduce the cost of electricity** and help evolve economies to near zero emissions;
- **Co-optimize** transmission, generation, storage, and distributed resources;
- Increase the understanding of how Variable Generation impacts and alters the electricity grid and model it more accurately;
- **Agnostically determine the least-cost portfolio** of generation that will remove emissions from the economy;
- Determine the **optimal mix of VG** and other resources for efficient energy sectors;
- Model the *electrification* of industry, heating & transportation;
- License WIS:dom[®] optimization modeling suite and/or perform studies using the model;
- Ensure *equitable compensation and costs* for energy companies within a modernized grid;
 - Assist clients *unlock and understand the potential* of high VRE scenarios, as well as zero emission pathways.

Current clients include

✓ Large ISOs;

- ✓ Fortune 100 Companies;
- ✓ Universities (and others) purchasing weather, power and climate datasets as well as studies of microgrids for their campuses;
- ✓ Venture Capitalists & Startup companies;
- Nonprofit organizations seeking robust modeling of electricity transitions;
- Energy Developers Seeking Advantages in Deployment of New Generators;
- Philanthropists & others in need of robust energy transition modeling.

Outline of presentation

 Tools VCE[®] uses and how we approach the problem of planning future scenarios;

2. General results from VCE[®] national studies with WIS:dom[®];

3. Specific results from WIS:dom[®] for Colorado.

The WIS:dom[®] model co-optimizes generation, transmission, storage and DERS across the entire CONUS at 3-km for each chronological 5-minutes for multiple years

WIS:dom[®] is a synthesis model

WIS:dom is the **only** commercially available combined capacity expansion and production cost model. It combines:

- Continental-scale (globally capable), spatially-determined co-optimization of transmission, generation, storage, and demand-side resource expansion while simultaneously determining the dispatch of these sub systems at 3-km, 5-minutely resolution;
- ✓ Dispatch includes:
 - Individual unit commitments, start-up, shutdown profiles, and ramp constraints;
 - Transmission power flow, planning reserves, and operating reserves;
 - Detailed description of Distributed Generation Potential;
 - Weather forecasting and physics of weather engines;
 - Detailed hydro modeling;
 - High granularity for weather-dependent generation;
 - Chronological intervals for at least a full calendar year;
 - Existing generator and transmission asset attributes such as heat rates, line losses, power factor, variable costs, fixed costs, capital costs, fuel costs, etc.;
- ✓ Large spatial and temporal horizons;
- ✓ Policy and regulatory drivers such as PTC, ITC, RPS, RGGI, etc.;
- ✓ Detailed investment periods;
- Capable of including electrification of other sectors, hydrogen production, fuel price elasticity, Ammonia production, and carbon mitigation.

WIS:dom[®] can be defined as a blended capacity expansion & production cost model

Models	US	Trans Exp.	Gen Exp.	Gen Plan Spatially	Trans Plan Spatially	Temp Res	Spat Res (km²)	Physics of Weather	Forecasts	W+S Tech count	Hydro Modeling	Global Capable	Disaggregate	Horizon	Invest Periods	Hardware	Elec Power Flow Realized
ReEDs	Y	Y	Y	N*	Y	17	2,472 (NA only)	N	N	3	N	N	Time slices, most T constrained	2050	25	Desktop; HPC	Ν
Switch	N	Y	Y	Y	Y	288	25	Ν	Ν	4-5	Ν	N*	WECC only and temporal splicing	2050	5	Desktop	Ν
GE Maps	N	Y*	Y	Y	N	760	~2500 (NA only)	N	Ν	3	Ν	N*	Only small areas	1 YR	1	Desktop Llnux cluster	DC no loss
ABB Grid View	Ν	Y*	Y	Υ	Ν	760	~2500 (NA only)	Ν	Ν	3	Ν	N*	Only small areas	1 YR	1	Desktop Llnux cluster	DC no loss
Plexos	N	N	Y	N	N	8766	4 (no standard)	N	Y	3	Some	Y	Only small areas	1 YR	1	Desktop Linux cluster; HPC	DC (plus AC, but only technically)
WIS:dom®	Y	Y	Y	Y	Y	8766 105,192 / yr 10 or 5 years US 1 year Global	9 - USA 49 - Globe	Y	Y 2, 6, 12 hr	Wind 35; Solar 40; Storage included	Detailed using weather and hydro data	Y	None: couples high granularity with large space temporal horizons	2050	6-16: blind and seer mode	High powered servers; Powerful Desktops; Simpler Version Laptops	DC with losses, Kirchhoff laws, reliability, substations and existing lines
ІАМ	Y	N	Y	N	Ν	1-100	250,000	Y	N	3-5	Y	Y	Long time averages; low spatial res	2100	10	Desktop all the way to HPC	Ν

The whole economy needs energy

The interconnection between sectors will create possible emergent behavior

The WIS:dom[®] model co-optimizes across sectors that are dependent upon each other when considering economy wide decarbonization

Electrification changes electricity needs

Electrification changes electricity needs everywhere

Land use-informed modeling

Original Data Source: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12c1

Weather-informed modeling

Weather-informed modeling

Weather-informed modeling

Advanced screening for distributed PV

Advanced screening for distributed PV

Multi-year data are necessary in WIS:dom®

Climate change data can be included WIS:dom®

Outline of presentation

 Tools VCE[®] uses and how we approach the problem of planning future scenarios;

2. General results from VCE[®] national studies with WIS:dom[®];

3. Specific results from WIS:dom[®] for Colorado.

100% Renewable energy capacity for contiguous US

100% clean energy capacity for contiguous US

100% renewable energy generation for contiguous US

100% clean energy generation for contiguous US

100% renewable energy for contiguous US

100% clean energy for contiguous US

100% renewable energy dispatch for contiguous US

info@vibrantcleanenergy.com

 \checkmark

100% clean energy dispatch for contiguous US

VIBRANT CLEAN ENERGY

info@vibrantcleanenergy.com

GHG emissions for contiguous US

✓ Both 100% RPS and 100% CF reach 80% GHG emission reductions from 1990 levels by 2050 across the whole economy. The electricity system is zero emissions.

Cumulative electricity costs for contiguous US

✓ By 2050, the average cost of electricity in the 100% RPS Scenario is \$155 / MWh
✓ By 2050, the average cost of electricity in the 100% CF Scenario is \$95 / MWh

info@vibrantcleanenergy.com

Outline of presentation

 Tools VCE[®] uses and how we approach the problem of planning future scenarios;

2. General results from VCE[®] national studies with WIS:dom[®];

3. Specific results from WIS:dom[®] for Colorado.

Colorado transmission modeling in WIS:dom®

Thank You Questions?

Dr Christopher T M Clack CEO Vibrant Clean Energy, LLC

Twitter: @VibrantCE & @DrChrisClack Telephone: +1-720-668-6873 E-mail: christopher@vibrantcleanenergy.com Website: VibrantCleanEnergy.com

Outline of presentation

- Tools VCE[®] uses and how we approach the problem of planning future scenarios;
- 2. General results from VCE[®] national studies with WIS:dom[®];
- 3. Specific results from WIS:dom[®] for Colorado.
- 4. One more thing... (demonstration of WIS:dom[®]-K)

