Minnesota's Smarter Grid:

Pathways Toward a Clean, Reliable and Affordable Transportation and Energy System

Prepared By:

Vibrant Clean Energy, LLC

Dr Christopher T M Clack

Prepared For:

MN PUC Special Planning Meeting October 30th, 2018

Disclaimer:

This presentation has been prepared in good faith on the basis of information available at the date of publication. The analysis was produced by Vibrant Clean Energy, LLC. No guarantee or warranty of the analysis is applicable. Vibrant Clean Energy, LLC will not be held liable for any loss, damage, or cost incurred by using or relying on the information in this presentation.

info@vibrantcleanenergy.com

Vibrant Clean Energy

Purpose of Vibrant Clean Energy, LLC:

- Reduce the cost of electricity and help evolve economies to near zero emissions;
- Co-optimize transmission, generation, storage, and distributed resources;
- Increase the understanding of how Variable Generation impacts and alters the electricity grid and model it more accurately;
- Agnostically determine the least-cost portfolio of generation that will remove emissions from the economy;
- Determine the optimal mix of VG and other resources for efficient energy sectors;
- Help direct the transition of heating and transportation to electrification;
- License WIS:dom optimization model and/or perform studies using the model;
- Ensure profits for energy companies with a modernized grid;
- Assist clients unlock and understand the potential of high VRE scenarios, as well as zero emission pathways.

info@vibrantcleanenergy.com

Minnesota's Smarter Grid

- Utilize the WIS:dom optimization model to investigate the pathways available to Minnesota to decarbonize the economy by 80% by 2050;
 - WIS:dom modeled the Minnesota electricity grid (along with the MISO and wider Eastern Interconnection) with electrification of some other sectors taken into account under baseline (BAU) and decarbonized conditions.
 - To decarbonize the economy by 80% by 2050, the electricity sector must decarbonize by a minimum of 91% (with the consideration of strong EE, electrification of space & water heating and transportation. Note these are all referenced back to 2005. Essentially, the MN electricity sector has a maximum of 4.5 mm T of CO₂ emissions allowed to reach goal.
- Builds off two previous studies that VCE has performed in the MISO footprint:
 - 1. A MISO commissioned study "High penetration renewable energy study for MISO" found here: <u>https://www.misoenergy.org/layouts/MISO/ECM/Redirect.aspx?ID=223249</u>
 - 2. An Energy Foundation funded project in collaboration with UMN and Strategen consulting "Modernizing Minnesota's Grid" found here: <u>http://energytransition.umn.edu/wp-content/uploads/2017/07/Workshop-Report-Final.pdf</u>

Our Approach With WIS:dom

The Whole Economy Needs Energy

VIBRANT CLEAN ENERGY

Electrification That WIS:dom Considers

The WIS:dom optimization model considers electrification through:

- 1. Light Duty Vehicles,
- 2. Heat pump Water Heaters (residential and commercial),
- 3. Heat pump space heating (residential and commercial),
- 4. Light Duty Trucks,
- 5. H2 production for:
 - Medium / Heavy Duty Trucking,
 - Industrial Demands,
 - Space heating (residential and commercial),
 - Other transportation (Sabitier to Fischer-Tropsch Processes).

Electrification That WIS:dom Considers

The WIS:dom optimization model considers electrification through:

- 1. Light Duty Vehicles,
- 2. Heat pump Water Heaters (residential and commercial),
- 3. Heat pump space heating (residential and commercial),
- 4. Light Duty Trucks,
- 5. H2 production for:
 - Medium / Heavy Duty Trucking,
 - Industrial Demands,
 - Space heating (residential and commercial),
 - Other transportation (Sabitier to Fischer-Tropsch Processes).

Demand-side Resources Create Flexibility

WIS:dom Contains Detailed Weather and Siting Datasets

WIS:dom Contains Detailed Weather and Siting Datasets

Advanced Screening For Rooftop PV

Note: Logarithmic Color Scale

Electricity Demand Changes Input Assumption

Baseline Electricity Demand in MN

Decarbonization Electricity Demand in MN

info@vibrantcleanenergy.com

Electricity Demand Change For Decarbonization

Change in Hourly MN Demand Profiles

VIBRANT CLEAN ENERGY

Emissions From Outside Electricity in MN

info@vibrantcleanenergy.com

Scenarios Condensed

Γ	Scenarios Completed										
I	D	Scenario	Transmission Expansion	Emission Target	Electrification	MN Flexibility Level	El Flexibility Level	NG Cost	Nuclear Retirement	DERs	
A	1	Background –	Interstate & Intrastate Allowed	Current Policies	El Minimal	0% to 2.1% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Follow License Schedule	No Lower Limit	
	2		Intrastate Allowed Only								
ь	1 2	MN Deep Decarbonization	Interstate & Intrastate Allowed	MN 80% Economy Reduction	MN Extensive	0% to 20.8% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Follow License Schedule	No Lower Limit	
В			Intrastate Allowed Only								
	1	High NG Cost	Interstate & Intractate Allowed	Current Policies	El Minimal	0% to 2.1% by 2050	0% to 2.1% by 2050	AEO 2018 - High	Follow License Schedule	No Lower Limit	
C	2		Intestate & Intrastate Allowed	MN 80% Economy Reduction	MN Extensive	0% to 20.8% by 2050					
_	1	Zero Emission Electricity MN	Interstate & Intrastate Allowed	MN 84% Economy Reduction	MN Extensive	0% to 20.8% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Follow License Schedule	No Lower Limit	
	2		Intrastate Allowed Only			0/8 10 20.8/8 Dy 2030					
Ε	1	El Decarbonizes with MN	Interstate & Intrastate Allowed	El 80% Economy Reduction	El Extensive	0% to 20.8% by 2050	0% to 20.8% by 2050	NREL ATB - Low	Follow License Schedule	No Lower Limit	
F	1	MN Deep Decarb. with Dominant DERs	Interstate & Intrastate Allowed	MN 80% Economy Reduction	MN Extensive	0% to 32.3% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Follow License Schedule	50% from DERs	
G	1	MN Deep Decarb.with less Flexibility	Interstate & Intrastate Allowed	MN 80% Economy Reduction	MN Extensive	0% to 5.2% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Follow License Schedule	No Lower Limit	
u	1	MN Deep Decarb. Nuclear Sensitivity	Interstate & Intrastate Allowed	MN 80% Economy Reduction	MN Extensive	0% to 20.8% by 2050	0% to 2.1% by 2050	NREL ATB - Low	Allow Early Retirement	No Lower Limit	
	2								Keep Online Through 2050		
			External Decision On Transmission Expansion	Reductions is taken from the 2005 emission record	Electrification of Sectors	Percentage of Demand				Percentage of Demand	

3 Scenarios do not decarbonize or electrify

8 Scenarios achieve 80% emissions reductions by 2050 compared with 2005

2 Scenarios completely decarbonize electricity sector

Main Conclusions Based Upon Synthesis Results

Major Conclusions

- ✓ Minnesota has the potential to reduce the cost of electricity for customers regardless of decarbonization portfolio. The cost reduction can be up to 2.8 ¢ / kWh compared with 2017 average retail costs. If Minnesota chooses to fully decarbonize the electricity sector and perform heavy electrification the cost reduction compared with 2017 would be 1.4 ¢ / kWh. The average decarbonization and electrification cost reduction is 2.3 ¢ / kWh.
- ✓ Minnesota can completely decarbonize. Doing so along with the rest of the Eastern Interconnection raises the difficulty; however, Minnesota can still achieve its goals.
- ✓ Without action emission reductions would cease by 2030. Further, the asset choices would keep emissions high, or would be stranded if emission targets were enacted at a later date.
- The jobs within the electricity sector in Minnesota is robust under all scenarios. In particular, with decarbonization and electrification jobs in the electricity sector rise dramatically.
- If natural gas costs rise, and decarbonization is not chosen Minnesotans could face a cumulative additional spend on electricity of approximately \$15.6 billion by 2050. Alternatively, decarbonization and electrification could save Minnesotans a cumulative \$15.9 to \$51.4 billion by 2050. That equates to an average household saving of \$600 \$1,200 per year in energy costs.

Retail Cost of Electricity By Scenario

Decarbonization Becomes Clear After 2020

Average Annual Household Savings

Deeper Dive: MN Decarbonization

Minnesota Installed Capacity

Installed Capacity (Geographic)

Installed Capacity (Geographic)

Installed Interstate Transmission Capacity

Cumulative Emissions By State

VIBRANT CLEAN ENERGY

Generation Share For Minnesota (Decarb)

Dispatch For Minnesota

Dispatch For Minnesota

Deeper Dive: El Decarbonization

Eastern Interconnection Installed Capacity

Installed Capacity (Geographic)

Generation Share For Eastern Interconnection

Dispatch For Eastern Interconnection

info@vibrantcleanenergy.com

Electrification is Key To Low-Cost Decarbonization

- Electrification and decarbonization can be achieved in Minnesota (along with the Eastern Interconnection) to provide a low-cost, lowemissions economy.
- ✓ The electrification and decarbonization for Minnesota could save each household up to \$1,200 per year in direct costs.
- Electrification provides flexibility to the electricity sector that reduces the impact of resource variability (but does not eliminate it completely).
- The electrification and decarbonization mitigates over 80% of the GHG emissions from the Minnesotan economy. It also reduces the exposure risk of the economy to volatility of the price of natural gas fuel.
- ✓ Without electrification, more transmission is required, and decarbonization becomes much more difficult.

Thank You Questions?

Full report found here: http://www.vibrantcleanenergy.com/media/reports/

> Dr Christopher T M Clack CEO Vibrant Clean Energy, LLC

Telephone: +1-720-668-6873 E-mail: christopher@vibrantcleanenergy.com Website: VibrantCleanEnergy.com

Eastern Interconnect Low-Carbon Grid (much less EE)

Eastern Interconnection Installed Capacity

Installed Capacity (Geographic)

Generation Share For Eastern Interconnection

Dispatch For Eastern Interconnection

Dispatch For Eastern Interconnection

Avoided Emissions For Eastern Interconnection

